• Title/Summary/Keyword: Geological Classification

Search Result 148, Processing Time 0.035 seconds

Soil Layer Distribution and Soil Characteristics on Dokdo (독도의 토층 분포 및 토질 특성)

  • Kyeong-Su Kim;Young-Suk Song;Eunseok Bang
    • The Journal of Engineering Geology
    • /
    • v.33 no.3
    • /
    • pp.475-487
    • /
    • 2023
  • We surveyed the distribution of soil layers on Dongdo and Seodo of Dokdo and measured the physical properties of the soils. To investigate the distribution of soil layers, the soil depth was measured directly in accessible locations, and visual observations of inaccessible locations were carried out using drones and boats. Soil depths ranged from 3 to 50 cm, and most soil layers had depths of 10~20 cm. Based on these results, a map of the soil layer was drawn using 5 cm intervals for soil depth. To analyze the soil characteristics of Dokdo, soil samples were collected from 13 locations on Dongdo and 13 locations on Seodo, in consideration of various geological settings. According to the results of grain size distribution tests, sand contents were >75%, and soil from Seodo contained more gravel-sized particles than that from Dongdo. Using the unified soil classification system (USCS) and textural classification chart of the United States Department of Agriculture (USDA), most of the soil samples from Dokdo are classified as sand, and some are classified as loamy or clayey sand. In addition, well-graded loamy or clayey sands are more common in Dongdo, and poorly graded sands with gravel are more common in Seodo. These results are expected to be important for studying soil characteristics on Dokdo.

Concentration of Radioactive Materials for the Phanerozoic Plutonic Rocks in Korea and Its Implication (국내 현생 심성암류의 방사성 물질의 농도 및 의미)

  • Kim, Sung Won
    • Economic and Environmental Geology
    • /
    • v.53 no.5
    • /
    • pp.565-583
    • /
    • 2020
  • In recent years, various social issues related to the natural radioactive elements detected in household goods and building materials are addressed, and should be solved promptly. In Korea, for more than 20 years, the Ministry of Environment has investigated the natural radioactive materials such as heavy metals, uranium, and radon in soil or groundwater. The origins of natural radioactive materials in them may have a close correlation with the geological factors including classification of rocks, petrogenetic origins, and deformation characteristics, but the exact geological correlations are not clarified because of the absence of the government policy preserved in the basement rocks, soils as well as groundwater in fault-related reservoirs. This study aims to perform a research on the correlation between the petrogeneses of the Phanerozoic plutonic rocks and natural radioactive concentrations in rocks (radon, uranium, thorium, potassium etc.) in Korea. Among the Phanerozoic plutonic rocks, alkaline plutonic rocks (syenite, monzonite and monzodiorite and alkali granite) show high U and Th concentrations by high solubilities of U, Th, Zr, REE, and Nb until the most extreme stages of magmatic fractionation (viz. crystal fractionation) due to high magma temperature and high alkalinity tendency. The highly fractionated high-K calalkaline and peraluminous granitic rocks (leucogranite, two-mica granite and leucocratic pegmatite are also U and Th concentrations compared with other less or medium fractionated granitic rocks (diorite, granodiorite and granite). The alkaline plutonic rocks are associated with intracontinental rifting and extensional environment after crustal thickening by collisional and subductional processes. In contrast, the dominant calc-alkaline granitic rocks in Korea are related to the arc environment of the subduction zone. In summary, the trends of the U, Th and K concentration from the Phanerozoic plutonic rocks in Korea are closely linked to the petrogenesis of the rocks in tectonic environment. The preliminary data for gamma-spectrometric mesurments of natural radionuclide contents (226Ra, 232Th and 40K) in the Phanerozoic plutonic rocks show high values in the alkaline and highly fractionated granitic rocks.

Geological Structures and Geochemical Uranium Anormal Zone Around the Shinbo Mine, Korea (신보광산 주변지역의 지질구조와 우라늄 지화학 이상대)

  • Kang, Ji-Hoon;Lee, Deok-Seon
    • Economic and Environmental Geology
    • /
    • v.45 no.1
    • /
    • pp.31-40
    • /
    • 2012
  • This paper examined the characteristics of ductile and brittle structural elements with detailed mapping by lithofacies classification to clarify the relationship between the geological structure and the geochemical high-grade uranium anormal zone and to provide the basic information on the flow of groundwater in the eastern area of Shinbo mine, Jinan-gun, Jeollabuk-do, Korea. It indicates that this area is mainly composed of Precambrian quartzite, metapelite, metapsammite, which show a zonal distribution of mainly ENE-WSW trend, and age unknown pegmatite and Cretaceous porphyry which intrude them. But the Cretaceous Jinan Group which unconformably covers them, contrary to assumption, could not be observed. The main ductile deformation structures of Precambrian metasedimentary rocks were formed at least through three phases of deformation [ENE striking regional foliation (D1) -> ENE or EW striking crenulation foliation (D2) -> WNW or EW trending open, tight, kink folds (D3)]. The predominant orientation of S1 regional foliation strikes ENE and dips south, being similar to the zonal distribution of Precambrian metasedimentary rocks. Most predominant orientation of high-angled brittle fracture (dip angle ${\geq}45^{\circ}$) [ENE (frequency: 24.3%) > NS (23.9%) > (N)NW (18.8%) > WNW (16.9%) > NE (16.1%) fracture sets in descending frequency order], which is closely related to the flow of groundwater, strikes ENE and dips south. It also agrees with the zonal distribution of metasedimentary rocks and the predominant orientation of S1 regional foliation. The next one strikes NS and dips east or west. Considering the controlling factor of the geochemical uranium anormal zone in the Shinbo mine and its eastern areas from the above structural data. the uranium source rock in these areas might be pegmatite and the geochemical uranium anormal zone in the Sinbo mine area could be formed by an secondary enrichment through the flow of pegmatite aquifer's groundwater into the Sinbo mine area like the previous research's result.

Estimation of Agricultural Water Quality Using Classification Maps of Water Chemical components in Seonakdong River Watershed (수질성분 분포도를 이용한 서낙동강 수계 농업용수 수질평가)

  • Ko, Jee-Yeon;Lee, Jae-Sang;Kim, Choon-Song;Jeong, Ki-Yeol;Choi, Young-Dae;Yun, Eul-Soo;Park, Seong-Tae;Kang, Hwang-Won;Kim, Bok-Jin
    • Korean Journal of Environmental Agriculture
    • /
    • v.25 no.2
    • /
    • pp.138-146
    • /
    • 2006
  • To understand the status of water quality and work out a suitable countermeasures in Seonakdong watershed which has poor agro- environmental condition because of severe point and non-point source pollution by popularized city and near sea, we investigated the pollution sources and water quality from '03 and '05 and the result were mapped with GIS and RS for end-users's convenient comprehense and conjunction of water quality and geological data. The most degraded tributary was Hogeo stream which was affected directly by highly popularized Gimhae city, the main pollution source of the watershed. The pollution of tributaries in watershed increased the T-N of main body that reached over 4 mg/L during dry season. Pyeonggang stream and the lower part of main water way were suffered from high salt contents induced near sea and the EC value of those area were increased to 2.25 dS/m. The delivered loads of T-N and T-P were largest in Joman river as 56% and 61% of total delivered loads 1mm tributaries because of lots of stream flow. When Management mandate for irrigation water in Seonakdong river watershed was mapped for estimating integrated water quality as the basis of classification of EC and T-N contents in water, Hogeo and Shineo catchments were showed the requiring countermeasures none against nutrients hazard and Pyeonggang catchment was the vulnerable zone against nutrients and salts hazard. As the result, Seonakdong watershed had very various status of water quality by characteristics of catchments and countermeasures for improving water quality and crop productivity safely should changed depend on that.

Geo-surface Environmental Changes and Reclaimed Amount Prediction Using Remote Sensing and Geographic Information System in the Siwha Area (원격탐사와 지리정보시스템을 이용한 시화지구 일대의 지표환경변화와 토공량 예측연구)

  • Yang, So-Yeon;Song, Moo-Young;Hwang, Jeong
    • The Journal of Engineering Geology
    • /
    • v.9 no.2
    • /
    • pp.161-176
    • /
    • 1999
  • The objectives of this study are to analyze the changes of geo-surface topography in the Siwha embankment and the Ahsan city area by the image processing of Landsat Thematic Mapper data, and to estimate the reclaimed amount of the exposed tidal flat in the Siwha area using the GIS. False color composite, Tasseled cap, NVDI(normalized difference vegetation index), and supervised classification techniques were used to analyze the distribution of sediments and the aspect of topographical variations caused by artificial human actions. The total amount of the exposed tidal flat was estimated on the basis of the database snch as aerial photography, hydrographic chart, geological map, and scheme drawing in the Siwha area. The possible excavation regions for a seawall were predicted analyzing the supervised classification image of Landsat TM data. Tasseled cap images were used to observe the distribution of sediments. The difference of the NDVI images between spring and summer seasons indicates that deciduous and coniferous forests were distributed over the whole areas. The total fill-volume of the exposed Siwha tidal flat and the fill-volume of the construction planning seawall were calculated as $581,485,354\textrm{m}^3{\;}and{\;}3,387,360\textrm{m}^3$, respectively, from the digital terrain analysis. Daebu Island, Sunkam Island, and the part of Songsan-myeon were chosen as the cut area to make the seawall, and their cut-volumes were estimated as $5,229,576\textrm{m}^3,{\;}79,227,072\textrm{m}^3,{\;}and{\;}47,026,008\textrm{m}^3$, respectively. Therefore, the cut-volume of Daebu Island alone among three areas was sufficient to make the seawall.

  • PDF

A Study on the Forest Vegetation of Odaesan National Park, Korea (오대산국립공원 삼림식생에 관한 연구)

  • Kim, Chang-Hwan;Oh, Jang-Geun;Lee, Nam-Sook;Choi, Young-Eun;Song, Myoung-Jun
    • Korean Journal of Ecology and Environment
    • /
    • v.48 no.1
    • /
    • pp.61-67
    • /
    • 2015
  • This study, which was conducted from Apr. 2013 to Jan. 2014, was carried out as part of a project of making a more detailed ecological zoning map with 1/5,000 scale. The necessity of electronic vegetation map with large scale has arisen in order to make the best use of basic research findings on resource monitoring of National Parks and to enhance efficiency in National Park management. In order to improve accuracy and speed of vegetation research process, the data base for vegetation research was categorized into five groups, namely broad-leaved forest, coniferous forest, mixed forest, rock vegetation and miscellaneous one. And then a vegetation map for vegetation research was created for the research on the site. What is in the database for vegetation research and the vegetation map reflecting findings from vegetation research showed similar distribution rate for broad-leaved forest with 71.965% and 71.184%, respectively. The distribution rate of coniferous forest (16.010%, 15.747%), mixed forest (10.619%, 12.085%), and rock vegetation (0.015%, 0.002%) did not have much difference. In a detailed vegetation map reflecting vegetation research findings, the broad-leaved mountain forest was the most widely distributed with 60.096% based on the physiognomy classification. It was followed by mountain coniferous forest (16.332%), mountain valley forest (15.887%), and plantation forest (3.558%) As for vegetation conservation classification evaluated in the national park, grade I and grade II areas took up 200.44 km2, 61.80% and 108.80 km2, 33.55% respectively. The combined area of these two amounts to 95.35%, making this area the first grade area in ecological nature status. This means that this area is highly worth preserving its vegetation. The high rate of grade I area such as climax forests, unique vegetation, and subalpine vegetation seems to be attributable to diverse innate characteristics of Odaesan National Park, high altitude, low level of artificial disturbance, the subalpine zone formed on the ridge of the mountain top, and their vegetation formation, which reflects climatic and geological characteristics, despite continuous disturbance by mountain climbing.

An attempt at soil profiling on a river embankment using geophysical data (물리탐사 자료를 이용한 강둑 토양 종단면도 작성)

  • Takahashi, Toru;Yamamoto, Tsuyoshi
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.1
    • /
    • pp.102-108
    • /
    • 2010
  • The internal structure of a river embankment must be delineated as part of investigations to evaluate its safety. Geophysical methods can be most effective means for that purpose, if they are used together with geotechnical methods such as the cone penetration test (CPT) and drilling. Since the dyke body and subsoil in general consist of material with a wide range of grain size, the properties and stratification of the soil must be accurately estimated to predict the mechanical stability and water infiltration in the river embankment. The strength and water content of the levee soil are also parameters required for such prediction. These parameters are usually estimated from CPT data, drilled core samples and laboratory tests. In this study we attempt to utilise geophysical data to estimate these parameters more effectively for very long river embankments. S-wave velocity and resistivity of the levee soils obtained with geophysical surveys are used to classify the soils. The classification is based on a physical soil model, called the unconsolidated sand model. Using this model, a soil profile along the river embankment is constructed from S-wave velocity and resistivity profiles. The soil profile thus obtained has been verified by geotechnical logs, which proves its usefulness for investigation of a river embankment.

Classification of Transport Vehicle Noise Events in Magnetotelluric Time Series Data in an Urban area Using Random Forest Techniques (Random Forest 기법을 이용한 도심지 MT 시계열 자료의 차량 잡음 분류)

  • Kwon, Hyoung-Seok;Ryu, Kyeongho;Sim, Ickhyeon;Lee, Choon-Ki;Oh, Seokhoon
    • Geophysics and Geophysical Exploration
    • /
    • v.23 no.4
    • /
    • pp.230-242
    • /
    • 2020
  • We performed a magnetotelluric (MT) survey to delineate the geological structures below the depth of 20 km in the Gyeongju area where an earthquake with a magnitude of 5.8 occurred in September 2016. The measured MT data were severely distorted by electrical noise caused by subways, power lines, factories, houses, and farmlands, and by vehicle noise from passing trains and large trucks. Using machine-learning methods, we classified the MT time series data obtained near the railway and highway into two groups according to the inclusion of traffic noise. We applied three schemes, stochastic gradient descent, support vector machine, and random forest, to the time series data for the highspeed train noise. We formulated three datasets, Hx, Hy, and Hx & Hy, for the time series data of the large truck noise and applied the random forest method to each dataset. To evaluate the effect of removing the traffic noise, we compared the time series data, amplitude spectra, and apparent resistivity curves before and after removing the traffic noise from the time series data. We also examined the frequency range affected by traffic noise and whether artifact noise occurred during the traffic noise removal process as a result of the residual difference.

Time-series Analysis of Pyroclastic Flow Deposit and Surface Temperature at Merapi Volcano in Indonesia Using Landsat TM and ETM+ (Landsat TM과 ETM+를 이용한 인도네시아 메라피 화산의 화산쇄설물 분포와 지표 온도 시계열 분석)

  • Cho, Minji;Lu, Zhong;Lee, Chang-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.5
    • /
    • pp.443-459
    • /
    • 2013
  • Located on Java subduction zone, Merapi volcano is an active stratovolcano with a volcanic activity cycle of 1-5 years. Merapi's eruptions were relatively small with VEI 1-3. However, the most recent eruption occurred in 2010 was quite violent with VEI 4 and 386 people were killed. In this study, we have attempted to study the characteristics of Merapi's eruptions during 18 years using optical Landsat images. We have collected a total of 55 Landsat images acquired from July 6, 1994 to September 1, 2012 to identify pyroclastic flows and their temporal changes from false color images. To extract areal extents of pyroclastic flows, we have performed supervised classification after atmospheric correction by using COST model. As a result, the extracted dimensions of pyroclastic flows are nearly identical to the CVP monthly reports. We have converted the thermal band of Landsat TM and ETM+ to the surface temperature using NASA empirical formula and calculated time-series of the mean surface temperature in the area of peak temperature surrounding the crater. The mean surface temperature around the crater repeatedly showed the tendency to rapidly rise before eruptions and cool down after eruptions. Although Landsat satellite images had some limitations due to weather conditions, these images were useful tool to observe the precursor changes in surface temperature before eruptions and map the pyroclastic flow deposits after eruptions at Merapi volcano.

Petrogenetic Study on the Foliated Granitoids in the Chonju and the Sunchang Area(I) -In the Light of Petrochemical Properties- (전주 및 순창지역에 분포하는 엽리상화강암류의 성인에 대한 연구(I) - 암석지화학적 특성을 중심으로 -)

  • Na, Choon-Ki;Lee, In-Sung;Chung, Jae-Il
    • Journal of the Korean earth science society
    • /
    • v.18 no.6
    • /
    • pp.480-492
    • /
    • 1997
  • In order to understand the processes involved in the petrogenesis and the differentiation of the primary magma spectrum, a petrological and geochemical properties were investigated for the Chonju and the Sunchang foliated granites, which are located in the southwestern part of the Okchon zone and extends up to the northwestern boundary of the Ryongnam massif as two subparallel batholiths. Major element analyses show that the Chonju and Sunchang foliated granites are classified petrologically into a weakly to strongly peraluminous or calc-alkaline, but do not fit neatly into either of the I/S-type or magnetite/ilmenite-series classification schemes for granites, although the I-type and magnetite-series characteristics seem to be predominant based on the major element chemistry. In normative compositions, the Chonju granite is petrographically evolved from granodiorite to granite, whereas the Sunchang granite is from granodiorite to quartz monzodiorite. It seems to suggest a difference of the magmatic evolution processes such as crustal assimilation and/or fractional crystallization in magma. The REE patterns of both batholiths show high similarity and strongly fractionated REE distributions which show high $(Ce/Yb)_N$ ratios and little or no Eu anomalies. These REE patterns correspond broadly to those seen in the pre-Cretaceous granitoids of Korea. Apparently, the evidences obtained from the bulk compositions strongly suggest that the two foliated granitoids were formed by partial meltings of a relatively restricted and similar, may be common, source material which contains a continental crust component having an igneous composition, and have undergone a similar magmatic differentiation processes.

  • PDF