• Title/Summary/Keyword: Geologic materials

Search Result 64, Processing Time 0.021 seconds

CRITICALITY SAFETY OF GEOLOGIC DISPOSAL FOR HIGH-LEVEL RADIOACTIVE WASTES

  • Ahn, Joon-Hong
    • Nuclear Engineering and Technology
    • /
    • v.38 no.6
    • /
    • pp.489-504
    • /
    • 2006
  • A review has been made for the previous studies on safety of a geologic repository for high-level radioactive wastes (HLW) related to autocatalytic criticality phenomena with positive reactivity feedback. Neutronic studies on geometric and materials configuration consisting of rock, water and thermally fissile materials and the radionuclide migration and accumulation studies were performed previously for the Yucca Mountain Repository and a hypothetical water-saturated repository for vitrified HLW. In either case, it was concluded that it would be highly unlikely for an autocatalytic criticality event to happen at a geologic repository. Remaining scenarios can be avoided by careful selection of a repository site, engineered-barrier design and conditioning of solidified HLW. Thus, criticality safety should be properly addressed in regulations and site selection criteria. The models developed for radiological safety assessment to obtain conservatively overestimated exposure dose rates to the public may not be used directly for the criticality safety assessment, where accumulated fissile materials mass needs to be conservatively overestimated. The models for criticality safety also require more careful treatment of geometry and heterogeneity in transport paths because a minimum critical mass is sensitive to geometry of fissile materials accumulation.

Web Contents Development of Virtual Geologic Field Survey for High School Students -Focusing on the Songaksan and Jisagae area of Jeju island- (고등학교 학생을 위한 가상지질조사 웹 컨텐츠 개발 -제주도 송악산과 지삿개를 중심으로-)

  • Hong, Seok-Eui;Lee, Chang-Zin
    • Journal of the Korean earth science society
    • /
    • v.24 no.3
    • /
    • pp.172-180
    • /
    • 2003
  • Geologic field survey is very important for the high school students who take the courses of earth science under the 7th earth science curriculum, however actually it is very difficult for the students to survey in the field because of long time and distance, and expenses. To overcome these difficulties, this study focused on developing the web contents and teaching-learning materials for virtual geologic field survey of the Songaksan and Jisagae area, Jeju island. The developed web contents were placed into three parts; main manu, sub manu and contents to help the learners flow-chart of the program easily. To overcome the weakness of existing textual web materials, some movable images and worksheets were provided for the learners, and the web contents were designed for the learners to experience as similar as the geologic field survey may let them do.

Introduction of Numerical Analysis Method for Calculation of Diffusion Property in Interlayer Water of Expansible Clay Mineral (팽창성 점토광물 내 층간수의 확산특성분석을 위한 수치해석학적 방법)

  • Choi, Jung-Hae;Chae, Byung-Gon;Chon, Chul-Min
    • Journal of the Mineralogical Society of Korea
    • /
    • v.25 no.4
    • /
    • pp.211-220
    • /
    • 2012
  • The numerical modeling and simulation have been used increasingly as tools for examining and interpreting the bulk structure and properties of materials. The use of molecular dynamics (MD) simulations to model the structure of materials is now both widespread and reasonably well understood. In this research, we introduced the numerical method to calculate the physico-chemical properties such as a diffusion coefficient and a viscosity of clay mineral. In this research, a series of MD calculations were performed for clay mineral and clay-water systems, appropriate to a saturated deep geological setting. Then, by using homogenization analysis (HA), the diffusion coefficients are calculated for conditions of the spatial distribution of the water viscosity associated with some configuration of clay minerals. This result of numerical analysis is quite similar to the previous experimental results. It means that the introduced numerical method is very useful to calculate the physico-chemical properties of clay minerals under various environmental conditions.

Perceptions and Practices of Teachers in an Earth Science Teachers' Research Group About Teaching Geologic Field Trip: A Case Study (지구과학 교사 연구 모임 참여 교사의 야외 지질 학습 지도에 대한 인식과 실행에 대한 사례 연구)

  • Jun, Young-Ho;Kwon, Hong-Jin;Choi, Byeon-Gak;Park, Jeong-Woong;Kim, Chan-Jong
    • Journal of the Korean earth science society
    • /
    • v.28 no.6
    • /
    • pp.686-698
    • /
    • 2007
  • The purpose of this study was to investigate the perceptions and practices of secondary science teachers who participated in an Earth science teachers' research roup about teaching geologic field trips. Four Earth science teachers participated in this study. Data included field trip observations, semi-structured interviews with teachers and students, and analysis of instructional materials and students' reports from the field trip. Field trip observations and interviews were video- and audio-taped and transcribed. Results indicated that teacher participants focused more on aesthetic objectives for geologic field trip. The participants' instruction tended to show rather teacher-centered explanation due to limited time at each field site though various teaching strategies were used at times to engage students in a scientific inquiry. This group of teachers strived to develop their professional ability to guide geologic field trip by working with a small study group with colleagues, participating geologic field trips, and enrolling graduate programs.

Low-level Determinations of Uranium and Thorium in Geologic Samples by X-ray Fluorescence (x-선 형광분석기톨 이용한 지질시료 중 우라늄과 토륨의 미량분석)

  • Park, Yong Joon;Kim, Jung Suk;Choi, Kwang Soon;Suh, Moo Yul
    • Analytical Science and Technology
    • /
    • v.9 no.1
    • /
    • pp.20-25
    • /
    • 1996
  • Trace levels of uranium and thorium in geologic samples are determined rapidly by a direct wavelength-dispersive X-ray fluorescence method. Relative intensity of scattered tube radiation was used as an internal standard to compensate for variations in instrumental operating characteristics. U and Th can be determined within a precision of ${\pm}10%$ and accuracy of ${\pm}15%$ or less with measuring times of 50 seconds for Th and 400 seconds for U, respectively. The results of XRF analysis were in good agreement with those of other methods such as nutron activation analysis and inductively coupled plasma atomic emission spectrometry.

  • PDF

Numerical Simulation of Water Table Drawdown due to Groundwater Pumping in a Contaminated Aquifer System at a Shooting Test Site, Pocheon, Korea

  • Kihm, Jung-Hwi;Hwang, Gisub
    • Economic and Environmental Geology
    • /
    • v.54 no.2
    • /
    • pp.247-257
    • /
    • 2021
  • The study area has been contaminated with explosive materials and heavy metals for several decades. For the design of the pump and treat remediation method, groundwater flow before and during groundwater pumping in a contaminated aquifer system was simulated, calibrated, and predicted using a generalized multidimensional hydrological numerical model. A three-dimensional geologic formation model representing the geology, hydrogeology, and topography of the aquifer system was established. A steady-state numerical simulation with model calibration was performed to obtain initial steady-state spatial distributions of groundwater flow and groundwater table in the aquifer system before groundwater pumping, and its results were illustrated and analyzed. A series of transient-state numerical simulations were then performed during groundwater pumping with the four different pumping rates at a potential location of the pumping well. Its results are illustrated and analyzed to provide primary reference data for the pump and treat remediation method. The results of both steady-state and transient-state numerical simulations show that the spatial distribution and properties of the geologic media and the topography have significant effects on the groundwater flow and thus depression zone.

A Case Study for Simulation of a Debris Flow with DEBRIS-2D at Inje, Korea (DEBRIS-2D를 이용한 인제지역 토석류 산사태 거동모사 사례 연구)

  • Chae, Byung-Gon;Liu, Ko-Fei;Kim, Man-Il
    • The Journal of Engineering Geology
    • /
    • v.20 no.3
    • /
    • pp.231-242
    • /
    • 2010
  • In order to assess applicability of debris flow simulation on natural terrain in Korea, this study introduced the DEBRIS-2D program which had been developed by Liu and Huang (2006). For simulation of large debris flows composed of fine and coarse materials, DEBRIS-2D was developed using the constitutive relation proposed by Julien and Lan (1991). Based on the theory of DEBRIS-2D, this study selected a valley where a large debris flow was occurred on July 16th, 2006 at Deoksanri, Inje county, Korea. The simulation results show that all mass were already flowed into the stream at 10 minutes after starting. In 10minutes, the debris flow reached the first geological turn and an open area, resulting in slow velocity and changing its flow direction. After that, debris flow started accelerating again and it reached the village after 40 minutes. The maximum velocity is rather low between 1 m/sec and 2 m/sec. This is the reason why debris flow took 50 minutes to reach the village. The depth change of debris flow shows enormous effect of the valley shape. The simulated result is very similar to what happened in the field. It means that DEBRIS-2D program can be applied to the geologic and topographic conditions in Korea without large modification of analysis algorithm. However, it is necessary to determine optimal reference values of Korean geologic and topographic properties for more reliable simulation of debris flows.

Occurrence and Mineralogical Characteristics of Dolomite Ores from South Korea (국내 백운석 광석의 산상과 광물학적 특성)

  • Hwang, Jinyeon;Choi, Jin Beom;Jeong, Gi Young;Oh, Jiho;Choi, Younghun;Lee, Jinhyun
    • Journal of the Mineralogical Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.87-99
    • /
    • 2013
  • The occurrence, mineralogical characteristics, and origin of the dolomite ores were investigated from major dolomite mines in South Korea. Mineralogical and textural properties of the ores and associated minerals were analyzed using X-ray diffraction, thin section petrography, and scanning electron microscopy. Dolomite ores were light to dark gray in color and mainly composed of dolomite in varying particle size with minor amounts of calcite, quartz and micas. Calcite, quartz, illite, feldspar, kaolin minerals, and chlorite occurred in local veins, dikes and alteration zones. Sepiolite and wollastonite occurred in the altered part of some mine. Asbestos minerals such as chrysotile and tremolite, however, were not identified in the present study. Reddish brown to yellow clay materials were mainly composed of illite, occasionally associated with kaolin minerals and smectite. These clay minerals might be a product of the local hydrothermal alteration related to the dyke intrusion and subsequent weathering. As well indicated in the previous studies, mineral composition, texture, and occurrence of the dolostone beds suggest their formation through the diagenesis of carbonate sediments deposited in the shallow sea during the Precambrian to Paleozoic period.

Study on the behavior of radionuclides in geologic samples from fault zone, Gabal Um Hamd, southwestern Sinai, Egypt

  • Doaa M. El Afandy;Eman M. Ibrahim;Ibrahim E. El Aassy;H.A. Abdel Ghany
    • Nuclear Engineering and Technology
    • /
    • v.56 no.9
    • /
    • pp.3785-3795
    • /
    • 2024
  • The present study concerned with the activity concentrations of natural radionuclides (238U, 234U, 230Th, 226Ra, 232Th, 40K and, 235U) in ten sedimentary rock samples collected from fault zone, Gabal Um Hamd, southwestern Sinai, Egypt. These samples were investigated to study their behavior during a part of geologic time. The activity concentrations were measured using γ-ray spectrometry (HPGe detector). The investigated samples were analyzed for major oxides using the XRF technique. The results demonstrated high average activity concentrations of 238U, 234U, 230Th, 226Ra, 232Th, 40K and, 235U than the worldwide average values as reported by UNSCEAR 2008. Theil diagram showed that there are accumulation and leaching of uranium in some samples in the two sides of the fault zone. It is noticed that the ages of uranium depositions for the samples collected from the downthrown of the fault zone vary from 121.5 to 440.1 ky, while for the sample collected from the upthrown of the fault is 210.9 ky. The 230Th/232Th activity ratios range between 4.55 and 91.04 for downthrown samples and between 4.75 and 6.05 for upthrown samples which are smaller than 20 except for two samples, indicating a contamination of the samples by detrital 230Th. After subtraction of the detrital 230Th, the corrected ages for downthrown samples vary from 119.1 to 231.7 ky while for upthrown samples vary from 164.4 to 390 ky.

A Brief Review on Limestone Sources and Oyster Waste Generation-Bantayan

  • Yu, Kwang Sun;Thriveni, Thenepalli;Jegal, Yujin;Whan, Ahn Ji
    • Journal of Energy Engineering
    • /
    • v.26 no.1
    • /
    • pp.62-67
    • /
    • 2017
  • Limestone is an important commodity in Philippines. Limestone has numerous uses that range from agricultural applications to building materials to medicines. Many limestone products require rock with specific physical and chemical characteristics. Most limestone is biochemical in origin meaning the calcium carbonate in the stone originated from shelled oceanic creatures. In this paper, we reported the natural sources of limestone, geological formation of limestone and the oyster shell waste in Cebu, Bantayan, Philippines were reported. Due to the mining or quarrying in Cebu, Bantayan, in a limestone area poses the threat of groundwater pollution (since limestone is a porous geologic formation with a high transmissivity). The other environmental issue is oyster shell waste. The oyster shell waste is the major source of limestone. We developed and applied appropriate technologies for the extraction of limestone from oyster shell waste and utilizes as high value added material.