• Title/Summary/Keyword: Geologic $CO_2$ storage

Search Result 26, Processing Time 0.025 seconds

Geophysics for Carbon Capture and Storage in Korea (국내 CO2 지중저장과 지구물리탐사의 역할)

  • Hwang, Se-Ho;Park, Kwon-Gyu
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.16-19
    • /
    • 2009
  • Recently, CO2 geologic storage (geologic sequestration) has been concerned as one of methodologies for reducing greenhouse gas. We expect that geophysical approach plays an important role in the site selection, characterization, and monitoring during CO2 injection or post-injection. Especially we believe that monitoring and verification technologies such as surface and borehole geophysical methods are an important part of making CO2 geologic storage an acceptable method.

  • PDF

Status and Implications of Regulatory Frameworks for Environmental Management of Geologic CO2 Storage in USA and EU (이산화탄소 지중저장의 환경 관리를 위한 미국과 유럽연합의 법·제도 현황과 시사점)

  • Jang, Eunseon;Yun, Seong-Taek;Choi, Byoung-Young;Chung, David;Kang, Hun
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.9-22
    • /
    • 2012
  • Though geologic storage of $CO_2$ (GS) is considered as an attractive technological option to enormously reduce greenhouse gases emission into the atmosphere, many concerns on potential environmental and health risks associated with $CO_2$ leakage have been raised. In particular, groundwater contamination due to the brine displacement by a pressure build-up and the acidification by leaked $CO_2$ is paid a special attention. Therefore, integrated regulatory frameworks have been established by law in many countries to secure the permanent containment of injected $CO_2$. Regulatory frameworks deal with entire processes of GS, including site selection, monitoring and post-closure environmental management. This review paper provides a summary of regulatory frameworks in USA (U.S. EPA Geologic Sequestration Rule) and EU (Geologic $CO_2$ Sequestration Directive). The regulatory framework to properly address environmental issues should be established for the deployment of CCS projects in Korea.

Fault Tree Analysis for Risk Assessment of CO2 Leakage from Geologic Storage (지중 저장 이산화탄소의 누출 위험도 평가를 위한 결함수 분석)

  • Lee, Sang Il;Lee, Sang Ki;Hwang, Jin Hwan
    • Journal of Environmental Impact Assessment
    • /
    • v.18 no.6
    • /
    • pp.359-366
    • /
    • 2009
  • CCS (Carbon Capture and Storage) is considered as the most promising interim solution to deal with the greenhouse gas such as $CO_2$ responsible for global warming. Even though carefully chosen geologic formations are known to contain stored gas for a long time period, there are potential risks of leakage. Up to now, applicable risk assessment procedures for the leakage of $CO_2$ are not available. This study presents a basis for risk analysis applicable to a complex geologic storage system. It starts with the classification of potential leakage pathways. Receptors and the leakage effect on them are identified and quantified. Then, a fault tree is constructed, which yields the minimum cut set (i.e., the most vulnerable leakage pathway) and quantifies the probability of the leakage risk through the cut set. The methodology will provide a tool for risk assessment in a CCS project. The outcomes of the assessment will not only ensure the safety of the CCS system but also offer a reliable and efficient monitoring plan.

Reactive transport modeling of the $CO_2-H_2O$-cement reaction in a $CO_2$ injection well for $CO_2$ geological storage ($CO_2$ 지중저장 주입정에서의 $CO_2-H_2O$-시멘트 반응 운송 모델링)

  • Jo, Min-Ki;Chae, Gi-Tak;Choi, Byoung-Young;Yu, Soon-Young;Kim, Tae-Hee;Kim, Jeong-Chan
    • The Journal of Engineering Geology
    • /
    • v.20 no.4
    • /
    • pp.359-370
    • /
    • 2010
  • $CO_2$ leakage from a geological formation utilized for $CO_2$ storage could result in failure of the facility and threaten the environment, as well as human safety and health. A reactive transport model of a $CO_2-H_2O$-cement reaction was constructed to understand chemical changes in the case of $CO_2$ leakage through a cement crack in an injection well, which is the most probable leakage pathway during geological storage. The model results showed the dissolution of portlandite and CSH (calcium silicate hydrate) within the cement paste, and the precipitation of secondary CSH and calcite as the $CO_2$ plume migrated along the crack. Calcite occupied most of the crack after 3 year of reaction, which could be maintained until 30 years after crack development. The present results could be applied in the development of technology to prevent $CO_2$ leakage and to enhance the integrity of wells constructed for $CO_2$ geological storage.

Modeling Geologic Storage of Carbon Dioxide: Effects of Low-permeability Layer on Migration of CO2 (이산화탄소 지중저장 모델링: 저투수 이질협재층이 이산화탄소 거동에 미치는 영향)

  • Han, Ahreum;Kim, Taehee;Kwon, Yikyun;Koo, Min-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.3
    • /
    • pp.42-49
    • /
    • 2017
  • TOUGH2 was used to simulate the migration of $CO_2$ injected into a sandy aquifer. A series of numerical simulations was performed to investigate the effects of a low-permeability layer (LPL) embedded in the aquifer on the injection rate and the pressure distribution of $CO_2$. The results show that the size and location of the LPL greatly affected the spread of $CO_2$. The pressure difference between two points in the aquifer, one each below and above the LPL, increased as the size of the LPL increased, showing a critical value at 200 m, above which the size effect was diminished. The location of the LPL with respect to the injection well also affected the migration of $CO_2$. When the injection well was at the center of the LPL, the injection rate of $CO_2$ decreased by 5.0% compared to the case with no LPL. However, when the injection well was at the edge of the LPL, the injection rate was decreased by only 1.6%. The vertical distance between the injection point and the LPL also affected the injection rate. The closer the LPL was to the injection point, the lower the injection rate was, by up to 8.3%. Conclusively, in planning geologic storage of $CO_2$, the optimal location of the injection well should be determined considering the distribution of the LPL in the aquifer.

Relations between Physical and Mechanical Properties of Core Samples from the Bukpyeong and Pohang Basins (북평분지와 포항분지 시추코어의 물리적 성질과 역학적 성질간의 관계)

  • Kim, Hyunjin;Song, Insun;Chang, Chandong;Lee, Hikweon;Kim, Taehee
    • The Journal of Engineering Geology
    • /
    • v.23 no.4
    • /
    • pp.329-340
    • /
    • 2013
  • A geologic survey of the Bukpyeong and Pohang basins, as candidate basins for the geological storage of $CO_2$, was performed to evaluate storage capacity and security. To analyze the mechanical stability of the storage reservoir and cap rocks, we measured the porosity, seismic velocity, uniaxial strength, internal frictional angle, and Young's modulus of core samples recovered from the two basins. It is costly and sometimes impossible to conduct tests over the entire range of drill holes, and continuous logging data do not yield the mechanical parameters directly. In this study, to derive the mechanical properties of geologic formations from the geophysical logging data, we determined the empirical relations between the physical properties (seismic velocity, porosity, and dynamic modulus) and the mechanical properties (uniaxial strength, internal friction angle) of the core samples. From the comparison with our core test data, the best fits to the two basins were selected from the relations suggested in previous studies. The relations between uniaxial strength, Young's modulus, and porosity of samples from the Bukpyeong and Pohang basins are more consistent with certain rock types than with the locality of the basins. The relations between the physical and mechanical properties were used to estimate the mechanical rock properties of geologic formations from seismic logging data. We expect that the mechanical properties could also be used as input data for a modeling study to understand the mechanical instability of rock formations prior to $CO_2$ injection.

Method for Measuring pH and Alkalinity of High-Pressure Fluid Samples : Evaluation through Artificial Samples (고압 유체 시료의 pH 및 알칼리도 측정 방법 : 가상 시료를 활용한 실용성 평가)

  • Minseok Song;Soohyeon, Moon;Gitak Chae;Jun-Hwan Bang
    • Journal of Soil and Groundwater Environment
    • /
    • v.29 no.1
    • /
    • pp.1-9
    • /
    • 2024
  • As part of monitoring technology aimed at verifying the stability of CO2 geologic storage and mitigating concerns about leakage, a method for measuring the pH and alkalinity of high-pressure fluid samples was established to obtain practical technology. pH measurement for high-pressure samples utilized a high-pressure pH electrode, and alkalinity was measured using the Gran titration method for samples collected with a piston cylinder sampler (PCS). Experimental samples, referencing CO2-rich water and CO2 geologic storage studies, were prepared in the laboratory. The PCS controls the piston, preventing CO2 degassing and maintaining fluid pressure, allowing mixing with KOH to fix dissolved CO2. Results showed a 6.1% average error in high-pressure pH measurement. PCS use for sample collection maintained pressure, preventing CO2 degassing. However, PCS-collected sample alkalinity measurements had larger errors than non-PCS measurements, limiting PCS practicality in monitoring field settings. Nevertheless, PCS could find utility in preprocessing for carbon isotope analysis and other applications. This research not only contributes to the field of CCS monitoring but also suggests potential applications in studies related to natural analogs of CCS, CO2-rock interaction experiments, core flooding experiments, and beyond.

Distribution and Behavior of Soil CO2 in Pohang area: Baseline Survey and Preliminary Interpretation in a Candidate Geological CO2 Storage Site (포항 지역 토양 CO2의 분포 및 거동 특성 연구: CO2 지중저장 부지 자연 배경 조사 및 예비 해석)

  • Park, Jinyoung;Sung, Ki-Sung;Yu, Soonyoung;Chae, Gitak;Lee, Sein;Yum, Byoung-Woo;Park, Kwon Gyu;Kim, Jeong-Chan
    • Journal of Soil and Groundwater Environment
    • /
    • v.21 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • Distribution and behavior of baseline soil CO2 were investigated in a candidate geologic CO2 storage site in Pohang, with measuring CO2 concentrations and carbon isotopes in the vadose zone as well as CO2 fluxes and concentrations through ground surface. This investigation aimed to assess the baseline CO2 levels and to build the CO2 monitoring system before injecting CO2. The gas in the vadose zone was collected using a peristaltic pump from the depth of 60 cm below ground surface, and stored at gas bags. Then the gas components (CO2, O2, N2, CH4) and δ13CCO2 were analyzed using GC and CRDS (cavity ringdown spectroscopy) respectively in laboratory. CO2 fluxes and CO2 concentrations through ground surface were measured using Li-COR in field. In result, the median of the CO2 concentrations in the vadose zone was about 3,000 ppm, and the δ13CCO2 were in the wide range between −36.9‰ and −10.6‰. The results imply that the fate of CO2 in the vadose zone was affected by soil property and vegetations. CO2 in sandy or loamy soils originated from the respiration of microorganisms and the decomposition of C3 plants. In gravel areas, the CO2 concentrations decreased while the δ13CCO2 increased because of the mixing with the atmospheric gas. In addition, the relation between O2 and CO2, N2, and the relation between N2/O2 and CO2 implied that the gases in the vadose zone dissolved in the infiltrating precipitation or the soil moisture. The median CO2 flux through ground surface was 2.9 g/m2/d which is lower than the reported soil CO2 fluxes in areas with temperate climates. CO2 fluxes measured in sandy and loamy soil areas were higher (median 5.2 g/m2/d) than those in gravel areas (2.6 g/m2/d). The relationships between CO2 fluxes and concentrations suggested that the transport of CO2 from the vadose zone to ground surface was dominated by diffusion in the study area. In gravel areas, the mixing with atmospheric gases was significant. Based on this study result, a soil monitoring procedure has been established for a candidate geologic CO2 storage site. Also, this study result provides ideas for innovating soil monitoring technologies.

Geochemical Concept and Technical Development of Geological $CO_2$ Sequestration for Reduction of $CO_2$ (이산화탄소 저감을 위한 지중처분기술의 지구화학적 개념과 연구개발 동향)

  • Chae, Gi-Tak;Yun, Seong-Taek;Choi, Byoug-Youg;Kim, Kang-Joo;Shevalier, M.
    • Economic and Environmental Geology
    • /
    • v.38 no.1
    • /
    • pp.1-22
    • /
    • 2005
  • Carbon dioxide ($CO_2$) is the greatest contributor among the major greenhouse gases covered by the Kyoto Protocol. Therefore, substantial efforts for the control and reduction of $CO_2$ emissions, including increased efficiency of fossil fuel energy usage, development of energy sources with lower carbon content, and increased reliability on alternative energy sources, are being performed worldwide. However, development and industrial application of $CO_2$ sequestration techniques are needed to meet the requirements of the Kyoto Protocol. Among the $CO_2$ sequestration methods developed, geological sequestration methods such as the storage in deep aquifers, deep coal seams and oil and gas reservoirs and the mineral carbonation is considered most favorable because of its stability and environmental effectiveness. In this review, geochemical concepts and technologic development of geologic sequestration technology, especially the storage in deep aquifers and the mineral carbonation, are discussed. The weakness and strengths for each of geologic sequestration methods, are also reviewed.