Geochemical Concept and Technical Development of Geological $CO_2$ Sequestration for Reduction of $CO_2$

이산화탄소 저감을 위한 지중처분기술의 지구화학적 개념과 연구개발 동향

  • Chae, Gi-Tak (Department of Earth and Environmental Sciences and the Environmental Geophere Research Lab (EGRL), Korea University) ;
  • Yun, Seong-Taek (Department of Earth and Environmental Sciences and the Environmental Geophere Research Lab (EGRL), Korea University) ;
  • Choi, Byoug-Youg (Department of Earth and Environmental Sciences and the Environmental Geophere Research Lab (EGRL), Korea University) ;
  • Kim, Kang-Joo (Department of Environmental Engineering, Kunsan National University) ;
  • Shevalier, M. (Applied Geochemistry Group, Department of Geology & Geophysics, University of Calgary)
  • 채기탁 (고려대학교 지구환경과학과 및 천부지권환경연구실) ;
  • 윤성택 (고려대학교 지구환경과학과 및 천부지권환경연구실) ;
  • 최병영 (고려대학교 지구환경과학과 및 천부지권환경연구실) ;
  • 김강주 (군산대학교 환경공학과) ;
  • Published : 2005.02.01

Abstract

Carbon dioxide ($CO_2$) is the greatest contributor among the major greenhouse gases covered by the Kyoto Protocol. Therefore, substantial efforts for the control and reduction of $CO_2$ emissions, including increased efficiency of fossil fuel energy usage, development of energy sources with lower carbon content, and increased reliability on alternative energy sources, are being performed worldwide. However, development and industrial application of $CO_2$ sequestration techniques are needed to meet the requirements of the Kyoto Protocol. Among the $CO_2$ sequestration methods developed, geological sequestration methods such as the storage in deep aquifers, deep coal seams and oil and gas reservoirs and the mineral carbonation is considered most favorable because of its stability and environmental effectiveness. In this review, geochemical concepts and technologic development of geologic sequestration technology, especially the storage in deep aquifers and the mineral carbonation, are discussed. The weakness and strengths for each of geologic sequestration methods, are also reviewed.

이산화탄소($CO_2$)는 기후협약에 관한 교토의정서에서 적시한 온실가스 중에서 가장 중요한 물질이다. 이에 세계 각 국은 화석에너지 사용의 효율성 증가, 저탄소 함량의 에너지원, 대체에너지원 개발 등 이산화탄소 배출량을 조절하고 줄이기 위한 기술 개발에 상당한 노력을 기울이고 있다. 그러나 교토의정서에서 제시한 배출량을 만족시키기 위해서 는 이산화탄소 처분 기술의 개발과 적용이 필수적으로 요구된다. 현재까지 개발된 이산화탄소 처분 기술 중에는 심부 대수층 처분, 심부 석탄층 처분, 유전 및 가스전 처분, 탄산염광물화 처분 등의 지중(지질) 처분 기술이 그 안정성 및 환경적 친화성으로 말미암아 가장 적극적으로 고려되고 있다. 본 논문에서는 이산화탄소 지중 처분 기술, 특히 대수 층 처분 및 탄산염광물화 처분 기술의 지구화학적 개념과 기술개발 동향에 대하여 알아보고 또한 각 지중 처분 기술 의 장점과 단점에 대하여 검토하고자 한다.

Keywords

References

  1. 고용권, 윤성택, 김천수, 최현수, 김건영 (1999a) 중원지역 탄산수의 지구화학적 진화. 자원환경지질, 32권, p.469-483
  2. 고용권, 김천수, 배대석, 최현수 (1999b) 초정지역 탄산수의 지화학적 연구 II. 동위원소. 지하수환경, 6권, p.171-179
  3. 고용권, 김천수, 최현수, 박맹언, 배대석 (2000) 강원도지역 탄산약수의 지화학적 연구. 지하수환경, 7권, p. 73-88
  4. 김건영, 고용권, 최현수, 김천수, 배대석 (2000) 중원지역 탄산온천수의 탄산염 침전물에 관한 광물학적 및 지구화학적 연구. 한국광물학회지, 13권, p. 22-36
  5. 이산화탄소저감 및 처리 기술개발 사업단 (2004) 홈페이지(www.cdrs.re.kr) 자료
  6. 최현수, 고용권, 김천수, 배대석, 윤성택 (2000) 강원도 지역 탄산수의 환경동위원소적 특성. 자원환경지질, 33권, p. 491-504
  7. 최현수, 고용권, 윤성택, 김천수 (2002) 강원도 지역 탄산수와 암석간의 반응에 의한 용존 원소들의 유동성에 관한 지구화학적 연구. 자원환경지질, 35권, p. 533-544
  8. 환경부 (2000) 온실가스 저감 시나리오별 비용/편익 분석
  9. 환경부 (2002) 민원(44178) 회신, 환경부 홈페이지 전자민원창구
  10. Adams, E.E., Caulfield, J.A., Herzog, H.J. and Auerbach, D.I. (1997) Impacts of reduced pH from ocean $CO_2$ disposal: sensitivity of zooplankton mortality to model parameters. Waste Management, v. 17, p. 375-380 https://doi.org/10.1016/S0956-053X(97)10038-1
  11. Akimoto, K., Kotsubo, H., Asami, T., Li, X., Uno, M., Tomoda, T. and Ohsumi, T. (2004) Evaluation of carbon dioxide sequestration in Japan with a mathematical model. Energy, v. 29, p. 1537-1549 https://doi.org/10.1016/j.energy.2004.03.058
  12. Aycaguer, A., Lev-On, M. and Winer, A.M. (2001) Reducing carbon dioxide emissions with enhanced oil recovery projects: a life cycle assessment approach, Energy and Fuels. v. 15, p. 303-308 https://doi.org/10.1021/ef000258a
  13. Bacastow, R.B. and Dewey, R.K. (1996) Effectiveness of $CO_2$ sequestration in the post-industrial ocean. Energy Conversion & Management, v. 37, p. 1079-1086 https://doi.org/10.1016/0196-8904(95)00302-9
  14. Bachu, S., Gunter, W.D. and Perkins, E.H. (1994) Aquifer disposal of $CO_2$: hydrodynamic and mineral trapping. Energy Conversion & Management, v. 35, p. 269-279 https://doi.org/10.1016/0196-8904(94)90060-4
  15. Bachu, S. (2000) Sequestration of $CO_2$ in geological media: criteria and approach for site selection in response of climate change. Energy Conservation and Management, v. 41, p. 953-970 https://doi.org/10.1016/S0196-8904(99)00149-1
  16. Bachu, S. (2001) Suitability of the western Canada Sedimentary Basin for $CO_2$ sequestration and capacity in oil and gas reservoirs. September 2001:
  17. Bachu, S. and Adams, J.J. (2003) Sequestration of $CO_2$ in geologic media in response to climate change: capacity of deep saline aquifers to sequester $CO_2$ in solution. Energy Conversion & Management, v. 44, 3151-3175 https://doi.org/10.1016/S0196-8904(03)00101-8
  18. Berner, R.A. and Holdren, G.R. (1977) Mechanism of feldspar weathering: some observational evidence. Geology, v. 5, p. 369-372 https://doi.org/10.1130/0091-7613(1977)5<369:MOFWSO>2.0.CO;2
  19. Berner, R.A. and Holdren, G.R. (1979) Mechanism of feldspar weathering II: observations of feldspars from soil. Geochim. Cosmochim. Acta, v. 43, p. 1173-1186 https://doi.org/10.1016/0016-7037(79)90110-8
  20. Coffin, R.B., Montgomery, M.T., Boyd, T.J. and Masutani, S.M. (2004) Influence of ocean $CO_2$ sequestration on bacterial production. Energy, v. 29, p. 1511-1520 https://doi.org/10.1016/j.energy.2003.06.001
  21. Crossely, N.G. (1998) Conversion of LPG salt caverns to natural gas storage 'A transGas Experience'. Journal of Canadian Petroleum Technology, v. 37, p. 37-47
  22. Dahlin, D.C., O'Connor, W.K., Nilsen, D.N., Nilson, G.E., Walter, R.P. and Turner, P.C. (2000) A method for permanent $CO_2$ sequestration: supercritical $CO_2$ mineral carbonation. Proceedings of the 17th Annual International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania
  23. Davison, J., Freund, P. and Smith, A. (2001) Putting carbon back in the ground. IEA Greenhouse Gas R&D Programme, ISBN 1898 373 28 0, 26p
  24. Deutsch, W.J. (1997) Groundwater geochemistry: fundamentals and applications to contamination. Lewis Publishers, Boca Raton, FL, USA, 221p
  25. Drever, J.I. (1997) The geochemistry of natural waters: surface and groundwater environments. Prentice- Hall, Inc., Upper Saddle River, NJ., 436p
  26. Duan, Z. and Sun, R. (2003) An improve model calculating $CO_2$ solubility in pure water and aqueous NaCl solutions from 273 to 533K and from 0 to 2,000 bar. Chemical Geology, v. 193, p. 257-271 https://doi.org/10.1016/S0009-2541(02)00263-2
  27. Durocher, K., Bloch, J., Perkins, E., Hutcheon, I., Shevalier, M., Mayer, B. and Gunter, W. (2004) Mineralogical characterization of the Weyburn reservoir, Saskatchewan, Canada: Are mineral reactions driving injected $CO_2$ storage. Energy, in press
  28. Emberley, S., Hutcheon, I., Shevalier, M., Durocher, K., Gunter, W.D. and Perkins, E.H. (2004) Geochemical monitoring of fluid-rock interaction at $CO_2$ storage at the Weyburn $CO_2$-injection enhanced oil recovery site, Saskatchewan, Canada. Energy, V. 29, p. 1393-1401 https://doi.org/10.1016/j.energy.2004.03.073
  29. Fauth, D.J. and Soong, Y. (2002) Mineral sequestration utilizing industrial by products, residues, and minerals. National Energy Technology Laboratory (NETL), Min eral Carbonation Workshop
  30. Feely, R.A., Sabine, C.L., Lee, K., Berelson, W., Kleypas, J., Fabry, V.J. and Millero, F.J. (2004) Impact of anthropogenic $CO_2$ on the $CaCO_3$ system in the ocean. Science, v. 305, p. 362-366 https://doi.org/10.1126/science.1097329
  31. Fokker, P.A. and van der Meer, L.G.H. (2003) The injection wells. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 551-556
  32. Fujika, Y., Ozaki, M., Takeuchi, K., Shindo, Y., Yanagisawa, T. and Komiyama, H. (1995) Ocean $CO_2$ sequestration at the depths lager than 3700m. Energy Conversion & Management, v. 36, p. 551-554 https://doi.org/10.1016/0196-8904(95)00065-L
  33. Gale, J. (2003) Geological storage of CO2: What's known, where are the gaps and what more needs to be done. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 207-212
  34. Gentzis, T. (2000) Subsurface sequestration of carbon dioxide-an overview from an Alberta (Canada) perspective. International Journal of Coal Geology, v. 43, p. 287-305 https://doi.org/10.1016/S0166-5162(99)00064-6
  35. Gerdermann, S.J., Dahlin, D.C. and O'Connor, W.K. (2003) Carbon dioxide sequestration by aqueous mineral carbonation of magnesium silicate minerals. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 677-678
  36. Goldberg, P. and Walters, R. (2003) A program to develop $CO_2$ sequestration via mineral carbonation. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 665-669
  37. Guever, P., Fruman, D.H. and Murray, N. (1996) Conceptual design of an integrated solid $CO_2$ penetrator marine disposal system. Energy Conversion & Management, v. 37, p. 1053-1060 https://doi.org/10.1016/0196-8904(95)00297-9
  38. Gunter, W.D., Wiwchar, B. and Perkins, E.H. (1997) Aquifer disposal of $CO_2$ rich greenhouse gases: extension of the time scale of experiment for $CO_2$ sequestering reactions by geochemical modeling. Mineralogy and Petrology, v. 59, p. 121-140 https://doi.org/10.1007/BF01163065
  39. Hamelinck, C.N., Faaij, A.P.C., Turkenburg, W.C., van Bergen, F., Pagnier, H.J.M., Barzandji, O.H.M., Wolf, K.-H.A.A. and Ruijg, G.J. (2002) $CO_2$ enhanced coalbed methane production in the Netherlands. Energy, v. 27, p. 647-674 https://doi.org/10.1016/S0360-5442(02)00012-9
  40. Hirai, S., Okasaki, K., Tabe, Y, Hijikata, K. and Mori, Y. (1997a) Dissolution rate of liquid $CO_2$ in pressurized water flows and the effect of clathrate film. Energy, v.22, p. 285-293 https://doi.org/10.1016/S0360-5442(96)00134-X
  41. Hirai, S., Okasaki, K., Tabe, Y. and Hijikata, K. (1997b) Mass transport phenomena of liquid $CO_2$ with hydrate. Waste Management, v. 17, p. 353-360 https://doi.org/10.1016/S0956-053X(97)10039-3
  42. Hitchon, B., Gunter, W.D., Gentzis, T. and Bailey, R.T. (1999) Sedimentary basins and greenhouse gases: a serendipitous association. Energy Conservation and Management, v. 40, p. 825-843 https://doi.org/10.1016/S0196-8904(98)00146-0
  43. Ivory, I., Gunter, W.D., Law, D. and Wong, S. (2000) ecovery of $CO_2$ from flue gas, $CO_2$ sequestration and ethane production from coalbed methane reservoirs. roceedings of the International Symposium on Ecomaterials, Ottawa, August 20-23, p. 487-501
  44. Istvan, J.A. (1983) Storage of natural gas in caverns. Proceedings of the 6th Salt Symposium, Toronto, May 26-27, 25p
  45. Jia, L. and Anthony, E.J. (2003) Mineral carbonation and Zeca. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 671-676
  46. Klusman, R.W. (2003) Computer modeling of methanotrophic oxidation of hydrocarbons in the unsaturated zone from an enhanced oil recovery/sequestration project, Rangely, Colorado, USA. Applied Geochemistry, v. 18, p. 1839-1852 https://doi.org/10.1016/S0883-2927(03)00107-0
  47. Kohlmann, J. and Zevenhoven, R. (2001) The removal of CO2 from flue gases using magnesium silicates. In: Proceedings of the 11th International Conference on Coal Science, San Francisco, California
  48. Koljonen, T., Siikavirta, H., Zevenhoven, R. and Savolainen, I. (2004) $CO_2$ capture, storage and reuse potential in Finland. Energy, v. 29, p. 1521-1527 https://doi.org/10.1016/j.energy.2004.03.056
  49. Korbol, R. and Kaddour, A. (1995), Sleipner vest $CO_2$ disposal injection of removed $CO_2$ into the Utsira Formation. Energy Conservation and Management, v. 36, p. 509-512 https://doi.org/10.1016/0196-8904(95)00055-I
  50. Kosugi, S., Niwa, K., Saito, T., Kajishima, T. and Hamaogi, K. (2001) Design factors in gas-lift advanced dissolution (GLAD) system for $CO_2$ sequestration into the ocean. Chemical Engineering Science, v. 56, p. 6205-6210 https://doi.org/10.1016/S0009-2509(01)00210-X
  51. Lackner, K.S., Butt, D.P. and Wendt, C.H. (1997) Magnesite disposal of carbon dioxide. In: Proceedings of the 22nd International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida, p. 419-430
  52. Lackner, K.S., Butt, D.P., Wendt, C.H. and Zoick, H. (1998) Mineral carbonates as carbon dioxide sinks. Los Alamos National Laboratory, Los Alamos, LAUR- 98-4530, 9p
  53. Law, D.H.S. and Bachu, S. (1996) Hydrogeological and numerical analysis of $CO_2$ disposal in deep aquifers in the sedimentary basin. Energy Conservation and Management, v. 37, p. 1167-1174 https://doi.org/10.1016/0196-8904(95)00315-0
  54. Law, D.H.S., van der Meer, L.H.G. and Gunter, W.D. (2003) Comparison of numerical simulators for greenhouse gas storage in coalbeds, Part II: flue gas injection. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 563-568
  55. McPherson, B.J.O.L. and Cole, B.S. (2000) Multiphase $CO_2$ flow, transport and sequestration in the Powder River Basin, Wyoming, USA. Journal of Geochemical Exploration, v. 69-70, p. 65-69 https://doi.org/10.1016/S0375-6742(00)00046-7
  56. Mavor, M.J., Gunter, W.D., Robinson, J.R., Law, D.H.S. and Gale, J. (2002) Testing for $CO_2$ sequestration and enhanced methane production from coal. SPE Paper 75680, The SPE Gas Technology Symposium, May 30-June 2, Calgary, 14p
  57. Mignone, B.K., Sarmiento, J.L., Slater, R.D. and Gnanadesikan, A. (2003) Sensitivity of sequestration efficiency to mixing processes in the global ocean. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 725-731
  58. Moberg, R. (2001) The Weyburn $CO_2$ monitoring and storage project: Greenhouse Issues. IEA Greenhouse Gas R&D Programme, V. 57
  59. Morberg, R., Stewart, D.B. and Stachniak, D. (2003) The IEA Weyburn $CO_2$ monitoring and storage project. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 219-224
  60. Murai, S., Ohsumi, T, Nishibori, F. and Ozaki, M. (2003) The second phase of Japanese R&D program for CO2 ocean sequestration. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 733-738
  61. O'Connor, W.K., Dahlin, D.C., Turner, P.C. and Walters, R.P. (1999) Carbon dioxide sequestration by ex-situ mineral carbonation. In: Proceedings of the 2nd Dixy Lee Ray Memorial Symposium: Utilization of Fossil Fuel-Generated carbon Dioxide in Agriculture and Industry, Washington D.C
  62. O'Connor, W.K., Dahlin, D.C., Nilsen, D.N., Walters, R.P. and Turner, P.C. (2000) Carbon dioxide sequestration by direct mineral carbonation with carbonic acid. In: Proceedings of the 25th International Technical Conference on Coal Utilization & Fuel Systems, Clearwater, Florida
  63. Oldenburg, C.M. and Unger, A.J. (2003) On leakage and seepage from geologic carbon sequestration sites. Vadose Zone Journal, v. 2, p. 287-296 https://doi.org/10.2113/2.3.287
  64. Ormerod, W.G., Freund, P. and Smith, A. (2002) Ocean storage of $CO_2$. IEA Greenhouse Gas R&D Programme, ISBN 1898 373 28 0, 26p
  65. Ozaki, M., Minamitura, J., Kitajimt, Y., Mizokami, S., Takeuchi, K. and Hatakenaka, K. (2001) CO2 ocean sequestration by moving ships. Journal of Marine Science and Technology, v. 6, p. 51-58 https://doi.org/10.1007/s773-001-8375-8
  66. Reeves, S. (2003) Coal-seq project update: field studies of ECBM recovery/$CO_2$ sequestration in coal seams. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 557-562
  67. Sabine, C.L., Feely, R.A., Gruber, N., Key, R.M., Lee, K., Bullister, J.L., Wanninkhof, R., Wong, C.S., Wallace, D.W.R., Tilbrook, B., Millero, F.J., Peng, T.H., Kozyr, A., Ono, T. and Rios, A.F. (2004) The oceanic sink for anthropogenic CO2. Science, v. 305, p. 367-371 https://doi.org/10.1126/science.1097403
  68. Schlesigner, W.H. (1997) Biogeochemistry: an analysis of global change. Academic Press, 588p
  69. Schraufnagel, R.A. (1993) Coalbed methane production. In: Law, B.E. and Rice, D.D. (eds) Hydrocarbons from coal, American Association of petroleum Geologists, Studies in Geology, v. 38 p. 341-359
  70. Shafeen, A., Croiset, E., Douglas, P.L. and Chatzis, I. (2004) $CO_2$ sequestration in Ontario, Canada, Part I: storage evaluation of potential reservoir. Energy Conversion and Management, v. 45, p. 2645-2659 https://doi.org/10.1016/j.enconman.2003.12.003
  71. Shevalier, M., Durocher, K., Perez, R., Hutcheon, I., Mayer, B., Perkins, E. and Gunter, W. (2004) Geochemical monitoring of gas-water-rock interaction at the IEA Weyburn $CO_2$ monitoring and storage project, Saskatchewan, Canada. Energy, in press
  72. Stumm, W. and Morgan, J.J. (1996) Aquatic chemistry: chemical equilibria and rates in natural waters, 3rd ed., John Wiley & Sons, Inc., New York, 1022p
  73. Tanaka, S., Koide, H. and Sasagawa. (1995) Possibility of underground $CO_2$ sequestration in Japan. Energy Conservation and Management, v. 36, p. 527-530 https://doi.org/10.1016/0196-8904(95)00059-M
  74. Uchida, T. (1997) Physical property measurements on $CO_2$ clathrate hydrates. review of crystallography, hydration number, and mechanical properties. Waste Management, v. 17, p. 343-352 https://doi.org/10.1016/S0956-053X(97)10047-2
  75. U.S. D.O.E. (U.S. Department of Energy) (2002) Carbon sequestration technology roadmap: pathways to sustainable use of fossil energy. Office of Fossil Energy, National Energy Technology Laboratory(NETL), 22p
  76. van der Meer, L.G.H. (1993) The conditions limiting CO2 storage in aquifers. Energy Conservation and Management, v. 34, p. 959-966 https://doi.org/10.1016/0196-8904(93)90042-9
  77. Voormeij, D.A. and Simandl, G.J. (2004) Geological, ocean, and mineral $CO_2$ sequestration options: technical review. Geoscience Canada, v. 31, p. 11-22
  78. White, D.J., Burrowes, G., Davis, T., Hajnal, Z., Hirsche, K., Hutcheon, I., Majer, E., Rostron, B. and Whittaker, S. (2004) Greenhouse gas sequestration in abandoned oil reservoirs: the International Energy Agency Weyburn pilot project. GSA Today, v. 14, p. 4-10
  79. Whittaker, S.G. and Rostron, B. (2003) Geological storage of $CO_2$ in a carbonate reservoir within the Williston Basin, Canada: an update. In: Gale, J. and Kaya, Y. (eds) Proceedings of the 6th International Conference on Greenhouse Gas Control Technologies, Volume I. Elsevier Science Ltd., London, UK, p. 385-390
  80. Wolery, T.J. (1992) EQ3/6: Software package for geochemical modeling of aqueous systems: Package overview and installation guide (version 7.0). Lawrence Livermore National Laboratory Report UCRL-MA-110662 PT I, Livermore, California
  81. Wong, S., Gunter, W.D. and Mavor, M.J. (2000) Economics of $CO_2$ sequestration in coalbed methane reservoirs. In: Proceedings of SPE/CERI Gas Technology Symposium 2000, SPE 59785, April 3-5, Calgary, Alberta, p. 631- 638
  82. Xu, T., Apps, J.A. and Pruess, K. (2004) Numerical simulation of $CO_2$ disposal by mineral trapping in deep aquifers. Applied Geochemistry, v. 19, p. 917-936 https://doi.org/10.1016/j.apgeochem.2003.11.003
  83. Yun, S.T., Koh, Y.K., Choi, H.S., Youm, S.J. and So, C.S. (1998) Geochemistry of geothermal waters in Korea: environmental isotope and hydrochemical characteristics II. Jungwon and Munkyeong areas. Econ. Environ. Geol., v. 31, p. 201-213