• Title/Summary/Keyword: Geogrid-reinforced wall

Search Result 81, Processing Time 0.018 seconds

Troubles and Countermeasures of Geogrid-Reinforced Earth Wall (지오그리드 보강토 옹벽의 설계/시공에 따른 문제점과 대책방안)

  • 조삼덕
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.315-321
    • /
    • 2001
  • Since 1984, block-type reinforced earth wall with geogrid reinforcement has been widely used for retaining wall applications till now in Korea. The use of geogrid as a reinforcement in the reinforced earth wall is steadily increased in an amount over 1,500,000㎡ in a year However, still need exists that some problems in design and construction practices should be made to review, Therefore, this paper reviewed reasonable criteria for selection of backfills, design details considering the effect of the upper soil slope on reinforced earth wall, horizontal displacement of facing block during compaction, and the damage of geogrid reinforcements on the edge part of facing block. Finally, alternative methods of measures on those problems are proposed.

  • PDF

Lessons Learned from Failure of Geogrid-Reinforced Segmental Retaining Wall (블록식 보강토 옹벽의 하자발생 사례 분석)

  • 신은철;오영인;김종인
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.10a
    • /
    • pp.329-336
    • /
    • 2001
  • The numbers of geogrid-reinforced walls are widely used in Korea. This papers present the results of two failure case histories of geogrid-reinforced segmental retaining walls. The geological background of the construction sites, detailed construction sequences, and the amount of rainfall were examined. The failure of these reinforced walls are caused by the improper drainage system and foundation treatment, too sharpened curvature of corner work, and too high height of wall.

  • PDF

Reinforced Earth Retaining Wall of The Collapsed-A Case Study. (보강토옹벽의 사고사례에 관한 연구)

  • Yoo, Chung-Sik;Jung, Hyuk-Sang;Lee, Soung-Woo
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.958-967
    • /
    • 2004
  • This paper deal with cause and analysis about case of collapsed reinforced-soil retaining wall. The analysis of the cause was carried through experimentation, slop stability analysis and literature study. The experimentation treated the large direct shear test, the hydraulic conductivity test and the other basic test through backfill extracted from collapsed reinforced-soil retaining wall. The ultimate tensile strength was established by rib tensile strength test of geogrid. The analysis of internal and external stability of reinforced-soil retaining wall was performed on the basis of parameters. The result of analysis, reinforced-soil retaining wall and the slope at the dry season are stable. However, the factors that fine-grained soil at hydrometer test exceed the standard of the design, rainfall duration is too long at the time of collapse and monthly pricipitation is heavy are cause of the collapse.

  • PDF

Instrumentation of A Two-Level of Soil-Reinforced Segmental Retaining Wall (계단식 지오그리드 보강토 옹벽의 계측)

  • 유충식;정혁상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.697-704
    • /
    • 2002
  • This paper presents the results of instrumentation of a two-level of soil-reinforced segmental retaining wall. Instrumentation items include the lateral wall displacements and the geogrid strains at several locations. The instrumentation is still long carried in order to examine long-term behavior. The result indicate that the upper wall has a significant effect on the behavior of the lower wall doubling the wall moved. The wall also exhibits significant post-construction movements that had ceased several months after the wall completed. The implication of the findings from this study was discussed in great detail.

  • PDF

A Study on Connection Strength Evaluation of Wall Facing/Geogrid Using I-type Connection Device (I형 연결장치를 이용한 전면블록/지오그리드 보강재의 연결강도 평가)

  • Han, Jung-Geun;Hong, Ki-Kwon;Cho, Sam-Deok;Lee, Kwang-Wu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.3
    • /
    • pp.45-52
    • /
    • 2009
  • The use of geogrid-reinforced earth wall technologies has progressed rapidly over the past 10 years in Korea because these technologies have advantages such as economical efficiency, graceful appearance, and easy construction. The geogrid used in the reinforced earth wall with concrete block facing can be subjected to damage among the upper and lower blocks and at the interface between the block and the geogrid. Therefore, when design of the geogrid-reinforced soil walls the required connection strength of the geogrid to the wall facing is an issue. In this study, new connection system between facing block and geogrid is developed to improve the damages of geogrid in the existing connection systems. The new connection devices are made of steel and have I-shape. This paper describes the test method and results of the laboratory testing for determination of connection strength in connection system using the I-type connection device.

  • PDF

Numerical study on the rate-dependent behavior of geogrid reinforced sand retaining walls

  • Li, Fulin;Ma, Tianran;Yang, Yugui
    • Geomechanics and Engineering
    • /
    • v.25 no.3
    • /
    • pp.195-205
    • /
    • 2021
  • Time effect on the deformation and strength characteristics of geogrid reinforced sand retaining wall has become an important issue in geotechnical and transportation engineering. Three physical model tests on geogrid reinforced sand retaining walls performed under various loading conditions were simulated to study their rate-dependent behaviors, using the presented nonlinear finite element method (FEM) analysis procedure. This FEM was based on the dynamic relaxation method and return mapping scheme, in which the combined effects of the rate-dependent behaviors of both the backfill soil and the geosynthetic reinforcement have been included. The rate-dependent behaviors of sands and geogrids should be attributed to the viscous property of materials, which can be described by the unified three-component elasto-viscoplastic constitutive model. By comparing the FEM simulations and the test results, it can be found that the present FEM was able to be successfully extended to the boundary value problems of geosynthetic reinforced soil retaining walls. The deformation and strength characteristics of the geogrid reinforced sand retaining walls can be well reproduced. Loading rate effect, the trends of jump in footing pressure upon the step-changes in the loading rate, occurred not only on sands and geogrids but also on geogrid reinforced sands retaining walls. The lateral earth pressure distributions against the back of retaining wall, the local tensile force in the geogrid arranged in the retaining wall and the local stresses beneath the footing under various loading conditions can also be predicted well in the FEM simulations.

Model Tests on Behavior of Geogrid Reinforced Soil Walls with Vertical Spacing of Reinforcement Layers (보강재 설치 간격에 따른 지오그리드 보강토옹벽의 변형거동에 관한 모형실험)

  • Cho, Sam-Deok;Lee, Kwang-Wu;Oh, Se-Yong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.372-379
    • /
    • 2004
  • The model tests were conducted to assess the behavior characteristics of geogrid reinforced earth walls according to various surcharge loads and reinforcement spacing. The models were built in the box having dimension, 100cm tall, 140cm long, and 100cm wide. The reinforcement used was geogrid(tensile strength 2.26t/m). Decomposed granite soil(ML) was used as a backfill material. The LVDTs were installed on the model retaining walls to obtain the displacements of the facing. In the results, the maximum displacement of facing and tensile strain of geogrid was measured at 0.7H(H is wall height) from the bottom of reinforced wall.

  • PDF

Current State and Technical Development of Geosynthetics-Reinforced Earth Wall (토목섬유 보강토옹벽의 기술현황 및 개발동향)

  • Cho, Sam-Deok;Lee, Kwang-Wu
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.141-157
    • /
    • 2008
  • Since 1984, block-type reinforced earth wall with geogrid reinforcement has been widely used for retaining wall applications till now in Korea. The use of geogrid as a reinforcement in the reinforced earth wall is steadily increased in an amount over $6,500,000m^2$ in a year. However, still need exists that some problems in design and construction practices should be made to review. Therefore, this paper reviewed current state and development items of geosynthetics-reinforced earth wall technology on design and construction point of view.

  • PDF

A Study on the Deformation Behavior of Nonwoven Geotextiles Reinforced Soil Walls Based on Literature Reviews (문헌조사에 근거한 부직포 보강토옹벽의 거동에 관한 연구)

  • Won, Myoung-Soo;Kim, Tae-Wan;Roh, Jae-Kune;Kim, Hyoung-Wan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.9 no.1
    • /
    • pp.21-30
    • /
    • 2010
  • To understand the deformation behavior of nonwoven geotextiles(NWGT) reinforced soil wall, analyses of load-elongation properties, soil-reinforcement interface friction, laboratory model tests, and field cases throughout literature reviews are being studied in this paper. According to the analyses results, the stiffness and tensile strength of NWGT is increased in proportion to confinement pressures, and the interface shear strength at soil-NWGT appeared to be stronger than soil-geogrid interface. The deformation at the beginning of loading on NWGT reinforced soil wall is larger than geogrid reinforced soil wall, but the wall deformation with NWGT is smaller than the wall of geogrid after passing some loading point in laboratory model tests. Case analysis results have shown that the facing of NWGT reinforced soil wall should be rigid enough to be used as a permanent wall, and NWGT and in-situ poor soil can be used for reinforcement and backfill respectively if the wall is constructed as pre-reinforced soil body and with post-facing that has a full-height rigid concrete.

  • PDF

Improved Effects of Reinforced Wall with Types of Connection Methods (보강재 연결 유.무에 따른 보강토옹벽의 보강효과)

  • 신은철;최찬용
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.67-76
    • /
    • 1998
  • The commonly used method to secure the stability of reinforced retaining structure is the reinfocement of backfill with connection attached or unattached to the geogrid type wall. Laboratory model tests for both cartes were conducted to investigate the effectiveness of geogridreinforcement, length of reinforcement inclusion, failure envelop, and the relationships between the face wall displacement and vertical settlement. The bearing capacity of each case was also determined. According to the model test results, geogrid-reinforced rigid wall is very effective for increasing the bearing capacity and reducing the displacement of retaining wall. The observed sliding line of model test is similar to the theoretical one.

  • PDF