• Title/Summary/Keyword: Geo-technology

Search Result 922, Processing Time 0.027 seconds

Enhancement of Geo-pointing Performance for Electro-Optical Systems by Compensating Transmission Time Delay of Navigation Data (항법정보 전송지연 보상을 통한 전자광학장비 좌표지향성능 향상)

  • Kim, Sung-Su;Moon, Seong-Man;Kwon, Kang-Hun;Yun, Chang-Ryul
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.16 no.2
    • /
    • pp.191-198
    • /
    • 2013
  • Geo-pointing is a function that maintains LOS(Line of Sight) to a stationary ground target by controlling azimuth and elevation angles of a EOS(Electro-Optical System) which are calculated from aircraft navigation data and target coordinates. In design and implementation of the geo-pointing, a transmission time delay between GPS/INS and EOS is a major degradation factor of the geo-pointing performance when the aircraft is rapidly maneuvered especially. In this paper, a kalman filter is designed to compensate the transmission time delay of aircraft navigation data. Simulation and test results show that the geo-pointing performance is enhanced by the proposed compensation technique.

Development of a Geo-Pointing System of Helicopter-Mounted FLIR (헬기 장착 전방관측적외선장비 좌표지향시스템 개발)

  • Kim, Sung-Su;Shin, Yong-San;Kim, Sung-Soo;Kwon, Kang-Hun
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.12 no.6
    • /
    • pp.750-759
    • /
    • 2009
  • FLIR(Forward Looking Infrared) geo-pointing is a function that helps pilots to see a target within the field of view under all coordinates and attitudes of helicopter. Geo-pointing controls FLIR LOS(line of sight) toward known target coordinates by using azimuth and elevation angles calculated from several information such as helicopter coordinates and attitudes, a FLIR position from a GPS antenna, and target coordinates. Geo-pointing performance has been tested and evaluated on the ground to save flight test costs and ensure flight safety. In this paper, design and implementation of a geo-pointing system is described with the results of performance test conducted on the ground test system.

Development and distribution of geo-hazards triggered by the 5.12 Wenchuan Earthquake in China

  • Runqiu, Huang;Weile, Li
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2009.03a
    • /
    • pp.1225-1234
    • /
    • 2009
  • As the Wenchuan Earthquake was of high magnitude and shallow seismic focus, it caused great damage and serious geo-hazards. By the field investigation and remote-sensing interpretation after the earthquake and by using means of GIS, the distribution of geo-hazards triggered by the earthquake was analyzed and the conclusions are as follows: (1) the earthquake geo-hazards showed the feature of zonal distribution along the earthquake fault zone and linear distribution along the rivers; (2) the distribution of earthquake geo-hazards had a marked hanging wall effect, for the development density of geo-hazards in the hanging wall of earthquake fault was obviously higher than that in the foot wall and the width of strong development zone in the hanging wall was about 10 km; (3) the topographical slope was a main factor which controlled the development of earthquake geo-hazards and a vast majority of geo-hazards were distributed on the slopes of 20 to 50 degrees; (4) the earthquake geo-hazards had a corresponding relationship with the elevation and micro-landform, for most hazards happened in the river valleys and canyon sections below the elevation of 1500 to 2000 m, particularly in the upper segment of canyon sections (namely, the turning point from the dale to the canyon). Thin ridge, isolated or full-face space mountains were most sensitive to the seismic wave, and had a striking amplifying effect. In these areas, collapses and landslides were most likely to develop; (5) the study also showed that different lithologies determined the types of geo-hazards, and usually, landslides occurred in soft rocks, while collapses occurred in hard rocks.

  • PDF

Suggestions for an Effective Earthquake R&D Strategy in Korea through an Analysis of Japan's Earthquake Disaster Prevention System (일본의 지진방재·대응 시스템 분석을 통한 효과적인 우리나라 지진 R&D 전략 제언)

  • Kim, Seong-Yong;Lee, Jae-Wook
    • Economic and Environmental Geology
    • /
    • v.53 no.3
    • /
    • pp.321-336
    • /
    • 2020
  • The Headquarters for Earthquake Research Promotion (HERP) represents the upper-most level of Japan's earthquake disaster prevention governance. Its policy committee establishes the national earthquake investigation research promotion plan. The earthquake investigation committee of HERP collects survey geo-data and evaluates the research results of each earthquake disaster prevention agency. The establishment of an earthquake-related geo-resilience research strategy is both necessary and desirable for Korea. The concept of geo-resilience entails the ability to improve disaster resilience through the application of research results and the convergence of geoscience with science and technology (S&T) including the humanities and social sciences. The achievement of geo-resilience requires a national long-term roadmap and strategy for earthquake prediction research, the development of earthquake disaster prediction and prevention technology, Geo-ICT convergence technology development, implementation of a geocyber physics system (Geo-CPS), the use of geo-mimetics, and geoscientific R&D as it relates to local communities. Through such efforts, the national research institutes of Korea will be able to develop earthquake prediction capacities in relevant fields, reinforce proactive response capabilities, enhance community-level confidence in geodata and its research results, foster next-generation geoscientific manpower, and expand geoscientific infrastructure.

Powder Metallurgy of Nanostructured High Strength Materials

  • Eckert, J.;Scudino, S.;Yu, P.;Duhamel, C.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.364-365
    • /
    • 2006
  • Nanostructured or partially amorphous Al-and Zr-based alloys are attractive candidates for advanced high-strength lightweight materials. Such alloys can be prepared by quenching from the melt or by powder metallurgy using mechanical attrition techniques. This work focuses on mechanically attrited powders and their consolidation into bulk specimens. Selected examples of mechanical deformation behavior are presented, revealing that the properties can be tuned within a wide range of strength and ductility as a function of size and volume fraction of the different phases.

  • PDF

Energy analysis-based core drilling method for the prediction of rock uniaxial compressive strength

  • Qi, Wang;Shuo, Xu;Ke, Gao Hong;Peng, Zhang;Bei, Jiang;Hong, Liu Bo
    • Geomechanics and Engineering
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2020
  • The uniaxial compressive strength (UCS) of rock is a basic parameter in underground engineering design. The disadvantages of this commonly employed laboratory testing method are untimely testing, difficulty in performing core testing of broken rock mass and long and complicated onsite testing processes. Therefore, the development of a fast and simple in situ rock UCS testing method for field use is urgent. In this study, a multi-function digital rock drilling and testing system and a digital core bit dedicated to the system are independently developed and employed in digital drilling tests on rock specimens with different strengths. The energy analysis is performed during rock cutting to estimate the energy consumed by the drill bit to remove a unit volume of rock. Two quantitative relationship models of energy analysis-based core drilling parameters (ECD) and rock UCS (ECD-UCS models) are established in this manuscript by the methods of regression analysis and support vector machine (SVM). The predictive abilities of the two models are comparatively analysed. The results show that the mean value of relative difference between the predicted rock UCS values and the UCS values measured by the laboratory uniaxial compression test in the prediction set are 3.76 MPa and 4.30 MPa, respectively, and the standard deviations are 2.08 MPa and 4.14 MPa, respectively. The regression analysis-based ECD-UCS model has a more stable predictive ability. The energy analysis-based rock drilling method for the prediction of UCS is proposed. This method realized the quick and convenient in situ test of rock UCS.

Development and Application of a Methodology to Build Geotechnical Information System Based on Geo-Knowledge Using GIS Technology (GIS를 이용한 지반-지식 기반 지반 정보화 시스템 구축 기법의 개발 및 적용)

  • Sun Chang-Guk;Chung Choong-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.2
    • /
    • pp.55-68
    • /
    • 2006
  • For the reliable prediction of spatial geotechnical data, a procedure to build the Geotechnical Information System (GTIS) based on geo-knowledge within the frame of GIS technology was developed by introducing a couple of new concepts of the extended area containing the study area and the additional site visit for acquiring surface geological data. To build the GTIS for Gyeongju as the case study of regional model application, intensive site investigations and pre-existing geotechnical data collections were performed and additional site visit was also carried out for acquiring surface geo-layer data in accordance with the developed procedure. Within the GTIS based on geo-knowledge for Gyeongiu area, the spatially distributed geo-layers across the extended area were predicted using the geostatistical kriging method and those for the study area were extracted. Furthermore, the spatial distribution maps for the thickess of geo-layers and the depth to bedrock were constructed for the practical use in geotechnical field. It was evaluated that the GTIS based on geo-knowledge developed in this study is superior to the conventional geotechnical GIS in terms of both the standard deviation and the geological expert judgment.

Application of Remote Sensing and GIS to Flood Monitoring and Mitigation

  • Petchprayoon, Pakorn;Chalermpong, Patiwet;Anan, Thanwarat;Polngam, Supapis;Simking, Ramphing
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.962-964
    • /
    • 2003
  • In 2002 Thailand was faced with severe flooding in the North, Northeast and Central parts of the country caused by heavy rainfall of the monsoonal depression which brought about significant damages. According to the report by the Ministry of Interior and the Ministry of Agricultural and Co-operatives, the total damages were estimated to be about 6 billion bath. More than 850,000 farmers and 10 million livestock were effected. An area of 1,450,000 ha of farmland in 59 Provinces were put under water for a prolonged period. Satellite imageries were employed for mapping and monitoring the flood-inundated areas, flood damage assessment, flood hazard zoning and post-flood survey of river configuration and protection works. By integrating satellite data with other updated spatial and non-spatial data, likely flood zones can be predicted beforehand. Some examples of satellite data application to flood dis aster mitigation in Thailand during 2002 using mostly Radarsat-1 data and Landsat-7 data were illustrated and discussed in the paper. The results showed that satellite data can clearly identify and give information on the status, flooding period, boundary and damage of flooding. For comprehensive flood mitigation planning, other geo-informatic data, such as the elevation of topography, hydrological data need to be integrated. Ground truth data of the watershed area, including the water level, velocity, drainage pattern and direction were also useful for flood forecasting in the future.

  • PDF

A novel route restoring method upon geo-tagged photos

  • Wang, Guannan;Wang, Zhizhong;Zhu, Zhenmin;Wen, Saiping
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.5
    • /
    • pp.1236-1251
    • /
    • 2013
  • Sharing geo-tagged photos has been a hot social activity in the daily life because these photos not only contain geo information but also indicate people's hobbies, intention and mobility patterns. However, the present raw geo-tagged photo routes cannot provide information as enough as complete GPS trajectories due to the defects hidden in them. This paper mainly aims at analyzing the large amounts of geo-tagged photos and proposing a novel travel route restoring method. In our approach we first propose an Interest Measure Ratio to rank the hot spots based on density-based spatial clustering arithmetic. Then we apply the Hidden Semi-Markov model and Mean Value method to demonstrate migration discipline in the hot spots and restore the significant region sequence into complete GPS trajectory. At the end of the paper, a novel experiment method is designed to demonstrate that the approach is feasible in restoring route, and there is a good performance.

Development of Software GPS Receiver for GEO Satellites Using Weak Signal Receiver Algorithm (미약신호 수신 알고리즘을 활용한 정지궤도위성 탑재용 소프트웨어 GPS 수신기 개발)

  • Kim, Chong-Won;Kim, Ghang-Ho;Kee, Chang-Don
    • Journal of Advanced Navigation Technology
    • /
    • v.18 no.4
    • /
    • pp.312-318
    • /
    • 2014
  • The altitudes of GEO satellites are higher than those of GPS satellites. Therefore the visibility and the received power of GPS signals are totally different from those of the users near the Earth's surface. In this study, we analyzed the visibility of GPS signals received on GEO satellites. And we also developed a software GPS receiver that works on GEO satellites using CCMDB algorithm which is a weak signal receiver algorithm. GPS signals received on a GEO satellite are generated by a commercial hardware GPS simulator and used for the verification of the developed software GPS receiver. The mean 3D position and velocity error are calculated as 165.636 m and 0.5081 m/s.