• Title/Summary/Keyword: Geo-materials

Search Result 337, Processing Time 0.021 seconds

A Pilot Study on Nondestructive Assessment of Compressive Strength Using Impact Force Response Signal (충격력 응답신호를 이용한 비파괴 압축강도 산정에 관한 기초연구)

  • Son, Moorak;Choi, Yoonseo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.20 no.4
    • /
    • pp.5-9
    • /
    • 2019
  • This paper is to provide the results of a pilot study of the usability and possibility of impact force response signal induced from impacting an object for the assessment of compressive strength of various materials (rock, concrete, wood, etc.) nondestructively. For this study, a device was devised for impacting an object and measuring the impact force. The impact was carried out by an initial rotating free falling impact and following repetitive impacts from the rebound action which eventually disappears. Wood and rock test specimens for different strengths were tested and an impact force response signal was measured for each test specimen. The total impact force signal energy which is assessed from integrating the impact force response signal was compared with the directly measured compressive strength for each specimen. The comparison showed that the total impact force signal energy has a direct relationship with the directly measured compressive strength and the results clearly indicated that the compressive strength of construction materials can be assessed nondestructively using total impact force signal energy which is assessed from integrating the impact force response signal induced from impacting an object.

A Study on the Characteristics of Alkali Silica Sol Grouting Material (알칼리성 실리카졸 지반주입재의 특성에 관한 연구)

  • Cho, Younghun;Kim, Chanki;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.4
    • /
    • pp.17-24
    • /
    • 2011
  • For the purpose of cut off and ground stabilization, water glass chemical grouting method using sodium silicate has problems of weakening durability and ground water pollution because leaching was conducted when the homogel is exposed to the ground water as time elapses. The purpose of this study is to identify the effect of alkali silica sol ground injection materials, it was compared with the sodium silicate ground injection materials using water glasses. For sodium silicate and alkali silica sol by mixing each case is divided into four different specimens were made and tested. The characteristic of alkali silica sol ground injection material was analyzed by unconfined compression test and environmental impact statement of ordinary portland cement and blast furnace slag cement. Alkali silica sol specimens were made mixing A-solution and B-solution in the proportion of one on one. Through this study, alkali silica sol ground injection mixing blast furnace slag cement has excellent strength and environment-friendly.

Effects of Ground Strength Increase using Polysaccharide Environmentally Friendly Soil Stabilizer (다당류 친환경 지반개량재를 이용한 지반강도 증대 효과)

  • Kim, Suntae;Do, Jongnam;Jo, Hyunsoo;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.11
    • /
    • pp.13-21
    • /
    • 2011
  • To recover basic functions of river such as water control, irrigation, environment, culture, a national river improvement project, the four river restoration projects were currently planned and under construction in Korea. This project is designed to preserve cultural assets and ecosystem from flooding, for that reason, environmentally friendly materials of construction are strongly emphasized. In this study, the soil and cement admixtures are developed. And, the compaction test and the unconfined compressive strength test to evaluate applicability of probiotics as environmentally friendly materials are conducted the soil and cement admixtures. As a result, the probiotic culture was not active in completely dried specimen to obtain accurate mixing proportion. It indicates that the probiotics cannot influence on the development the soil and cement admixtures. A further research will focus on the effect of response between polysaccharide environmentally friendly soil stabilizer and natural specimen.

A Study on the Development of Flowable Fill Materials for H-pile (가시설 H-pile의 유동화 채움재 개발)

  • Jeong, Won-Jeong;Im, Jong-Chul;Kim, Tae-Hyo;Joo, In-Gon;Kang, Hyun-Woo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.8
    • /
    • pp.39-50
    • /
    • 2011
  • Nowadays, H-piles are usually used as temporary retaining walls, and sometimes buried in the ground after construction. The purpose of this study is the development of flowable fill materials that are easy to fill holes of retaining wall structure and minimize friction during pulling out H-pile. The first test was performed to decide mix proportion that is reasonable for purpose, in the second test, direct shear test was performed to get pullout resistance between flowable fills material and H-pile, and one dimensional consolidation test was performed to analyze the compressibility. In the test result, it showed that flowable fill material mix proportion is 350-450% of water, 70-100% of cement and 70-100% of sand based on the bentonite weight.

Evaluation of High-Viscosity Grouting Injection Perfomance for Reinforcement of Rock Joint in Deep -Depth Tunnels (대심도 터널 암반 절리 보강을 위한 고점도 그라우팅 주입 성능 평가)

  • Inkook Yoon;Junho Moon;Younguk Kim
    • Journal of the Korean GEO-environmental Society
    • /
    • v.25 no.5
    • /
    • pp.15-19
    • /
    • 2024
  • This study aimed to develop high-efficiency grouting techniques under deep-depth conditions by experimentally verifying the applicability of various injection materials. Particle size analysis and injection model experiments were conducted with Ordinary Portland Cement (OPC) and Micro Cement (MC) to evaluate the injection performance of each material. Using Barton's Cubic Network theory, the rock fracture spacing was calculated for domestic deep-depth standards, specifically below 40 meters underground. The analysis of particle size passability under selected conditions showed that MC could pass through the rock fracture gaps, while OPC could not. According to the results of the injection model experiments using experimental devices and area calculation software, OPC failed in injection due to its larger particle size, whereas MC was capable of injection even under high-viscosity conditions. Based on these findings, the study quantitatively and visually derived the applicability of grouting materials under deep-depth conditions, and high-viscosity MC material is expected to be effective for waterproofing enhancement in deep-depth rock fracture surfaces.

An Experimental Study for the Effective Use Scheme of Snow Removal Materials on Road (도로 제설재의 효과적 사용방안에 관한 실험적 연구)

  • Do, Jongnam;Kim, Taesoo;Lee, Chanbok;Kim, Yeonjoong;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.2
    • /
    • pp.5-17
    • /
    • 2012
  • The amount of snow due to global warming and climate change has recently increased. The effective management of snow removal materials will be required. First, on the basis of domestic winter temperature, it is not necessary to get a baseline to less than the freezing point of $-52^{\circ}C$ for the calcium chloride($CaCl_2$) of 30%.. In terms of cost comparison between calcium chloride($CaCl_2$) and sodium chloride($NaCl$), the calcium chloride($CaCl_2$) is 2 to 3 times more expensive, and the supply of the calcium chloride($CaCl_2$) is not produced in domestic country and is in the conditions that have to imports all needed. Accordingly, the effective use scheme of snow removal materials should be considered to multifaceted ways. Thus, the objective of this study is to develop effective method and to replace from calcium choride($CaCl_2$) to sodium chloride($NaCl$) solution in the current snow removal operating system that uses a pre-wetted salt spreading method. The effective method that equals to the quality of the existing snow removal materials was developed in this study through performance tests for deicing chemicals, corrosion test of steel and freezing and thawing tests of concrete.

Flow and Strength Characteristics of the Lightweight Foamed CLSM(Controlled Low-Strength Materials) with Coal Ash (석탄회를 활용한 경량기포유동화재의 플로우 및 강도 특성)

  • Lee, Seungjun;Lee, Jonghwi;Chae, Hwiyoung;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.10
    • /
    • pp.73-82
    • /
    • 2011
  • Coal ash of industial by-products was not recycled about 30% in total emissions. Moreover, it caused environmental pollution as well as wasted unnecessary expenses and time. Currently, fly ash(FA) is recycled as construction material however ponded ash(PA) is mostly buried. Lightweight foamed Controlled Low-Strength Materials(CLSM) evaluated in this study reduces unit weight by mixing foam in the traditional Controlled Low-Strength Material and has lightweight and flowability to be available for backfill materials in construction. Flow test, unconfined compressive strength test, and foamed-slurry unit weight test were performed in this study and the applicability of lightweight foamed CLSM for construction materials was evaluated. The results indicate that the mixture ratio(PA:FA) ranging from 70:30 to 50:50, cement of 7%, foam of 2~3%, and water content of 26.5~29.5% were required to satisfy the following standards such as flow value(i.e., 20cm), unconfined compressive strength(i.e., 0.8~1.2MPa), and foamed-slurry unit weight(i.e., $12{\sim}15kN/m^3$).

POTENTIAL OF HYPERSPECTRAL DATA FOR THE CLASSIFICA TION OF VITD SOIL CLASSES

  • Kim Sun-Hwa;Ma Jung-Rim;Lee Kyu-Sung;Eo Yang-Dam;Lee Yong-Woong
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.221-224
    • /
    • 2005
  • Hyperspectral image data have great potential to depict more detailed information on biophysical characteristics of surface materials, which are not usually available with multispectral data. This study aims to test the potential of hyperspectral data for classifying five soil classes defined by the vector product interim terrain data (VITD). In this study, we try to classify surface materials of bare soil over the study area in Korea using both hyperspectral and multispectral image data. Training and test samples for classification are selected with using VITD vector map. The spectral angle mapper (SAM) method is applied to the EO-I Hyperion data and Landsat ETM+ data, that has been radiometrically corrected and geo-rectified. Higher classification accuracy is obtained with the hyperspectral data for classifying five soil classes of gravel, evaporites, inorganic silt and sand.

  • PDF

Effect of Coloration on the Hydrophilicity and Swelling Properties of Poly-HEMA Hydrogels

  • Jang, Jin-Ho;Park, Hwa-Sung;Jeong, Yong-Kyun
    • Textile Coloration and Finishing
    • /
    • v.19 no.2
    • /
    • pp.7-13
    • /
    • 2007
  • Photopolymerization of 2-hydroxyethyl methacrylate(HEMA), in the presence of ethyleneglycol dimethacrylate(EGDMA) and 1-Hydroxycyclohexyl phenyl ketone as crosslinker and photoinitiator, respectively, produced crosslinked poly-HEMA hydrogels. The hydrogels were colored by the exhaustion of vinylsul-phone-type reactive dyes. Good colorfastness to laundering was achieved when colored with C.I. Reactive Black 5. We investigated that the effect of coloration on the hydrophilicity and swelling properties of the films. More hydrophilic gel-surfaces were generated with in increase in coloration and crosslinking. Higher surface energy was observed with higher crosslinking level. The more rapid and higher water swellability of poly-HEMA gels after coloration may be resulted from a more opened gel structure by the easier hydration of the hydrophilic sulphonic acid groups of the reacted dyes in water.

An Experimental Study on the Effectiveness of Soil Compaction at Below-Freezing Temperatures (동결 온도에서 다짐효과에 관한 실험적 연구)

  • Hwang, BumSik;Chae, Deokho;Kim, Youngseok;Cho, Wanjei
    • Journal of the Korean GEO-environmental Society
    • /
    • v.16 no.1
    • /
    • pp.37-43
    • /
    • 2015
  • Korea has four distinct seasons, showing hot and humidity in summer and cold weather lasted in winter. Domestic research on earth work has been developed according to the seasonal characteristics, and most of research topics have focused on the effect of freezing-thawing on the performance of geo-materials. However, the previous research was performed on the ground compacted at room temperature and therefore, the effect of the sub-zero temperature at the time of construction was not fully investigated. The ground characteristics compacted at freezing temperature can be different from those at room temperature and show different characteristics of strength and deformation caused by freezing and thawing. Therefore, the compaction tests on sandy materials were conducted under various temperature at $-3^{\circ}C$ and $-8^{\circ}C$ with various fine contents of 0%, 5%, 10% and 15% in weight fraction. The effectiveness of soil compaction at below-freezing temperatures were compared with the compaction at room temperature at $18^{\circ}C$ in terms of the maximum dry unit weight and optimum water contents. Based on the test results, the maximum dry unit weight tends to decrease with the freezing temperature and the relative compaction at $-8^{\circ}C$ can not be satisfied with general specification standard.