• Title/Summary/Keyword: Geo-location accuracy

Search Result 35, Processing Time 0.034 seconds

KOMPSAT-1 EOC 영상의 기하정확도 분석

  • Kim, Jong-Ah;Jeun, Gab-Ho
    • Aerospace Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.141-148
    • /
    • 2002
  • The purpose of this study is to enhance geo-location accuracy of the image data acquired by the Electro-Optical Camera(EOC) onboard KOMPSAT-1. EOC image data were analyzed to verify geo-location error. It was found that the major contribution was the time mark inaccuracy and attitude knowledge error. This study shows that the geo-location accuracy can be enhanced by modifying the time and attitude data of the ancillary data.

  • PDF

Image Clustering using Geo-Location Awareness

  • Lee, Yong-Hwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.19 no.4
    • /
    • pp.135-138
    • /
    • 2020
  • This paper suggests a method of automatic clustering to search of relevant digital photos using geo-coded information. The provided scheme labels photo images with their corresponding global positioning system coordinates and date/time at the moment of capture, and the labels are used as clustering metadata of the images when they are in the use of retrieval. Experimental results show that geo-location information can improve the accuracy of image retrieval, and the information embedded within the images are effective and precise on the image clustering.

Use of Portable Global Positioning System (GPS) Devices in Exposure Analysis for Time-location Measurement

  • Lee, Ki-Young;Kim, Joung-Yoon;Putti, Kiran;Bennett, Deborah H.;Cassady, Diana;Hertz-Picciotto, Irva
    • Journal of Environmental Health Sciences
    • /
    • v.35 no.6
    • /
    • pp.461-467
    • /
    • 2009
  • Exposure analysis is a critical component of determining the health impact of pollutants. Global positioning systems (GPS) could be useful in developing time-location information for use in exposure analysis. This study compares four low cost GPS receivers with data logging capability (Garmin 60, Garmin Forerunner 201, GeoStats GeoLogger and Skytrx minitracker MT4100) in terms of accuracy, precision, and ease of use. The accuracy of the devices was determined at two known National Geodetic Survey points. The coordinates logged by the devices were compared when the devices were carried while walking and driving. The Garmin 60 showed better accuracy and precision than the GeoLogger when they were placed at the geodetic points. The Forerunner and Skytrx did not record when they were kept stationary. When the subject wore the devices while walking, the location of the devices differed by about 8 m on average between any two device combinations involving the four devices. The distance between the coordinates logged by the devices decreased when the devices were carried with their antennas facing the sky. All the devices showed similar routes when they were used in a car. All the devices except the Forerunner had satisfactory signal reception when they were worn and when they were carried in the car. The GeoLogger is less comfortable for the subject because of specific wearing requirements. This evaluation found that the Garmin 60 and the Skytrx may be useful in personal exposure analysis studies to record time-location data.

Quality Analysis of Three-Dimensional Geo-spatial Information Using Digital Photogrammetry (수치사진측량 기법을 이용한 3차원 공간정보의 품질 분석)

  • Lee, Hyun-Jik;Ru, Ji-Ho;Kim, Sang-Youn
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.4
    • /
    • pp.141-149
    • /
    • 2010
  • Three-dimensional geo-spatial information is important for the efficient use and management of the country and the three-dimensional expression and analysis of urban projects, such as urban plans devised by local governments and urban management. Thanks to the revitalization of the geo-spatial information service industry, it is now being variously used not only in public but also private areas. For the creation of high-guiltily three-dimensional geo-spatial information, emphasis should be placed on not only the quality of the source image and three-dimensional geo-spatial model but also the level of visualization, such as level of detail and texturing. However, in the case of existing three-dimensional geo-spatial information, its establishment process is complicated and its data are not updated frequently enough, as it uses ready-created digital maps. In addition, as it uses Ortho Images, the images exist Relief displacement. As a result, the visibility is low and the three-dimensional models of artificial features are simplified to reach LoD between 2 and 3, making the images look less realistic. Therefore, this paper, analyzed the quality of three-dimensional geo-spatial information created using the three-dimensional modeling technique were applied using Digital photogrammetry technique, using digital aerial photo images by an existing large-format digital camera and multi-looking camera. The analysis of the accuracy of visualization information of three-dimensional models showed that the source image alone, without other visualization information, secured the accuracy of 84% or more and that the establishment of three-dimensional spatial information carried out simultaneously with filming made it easier to gain the latest data. The analysis of the location accuracy of true Ortho images used in the work process showed that the location accuracy was better than the allowable horizontal position accuracy of 1:1,000 digital maps.

Efficient Mobile Robot Localization through Position Tracking Bias Mitigation for the High Accurate Geo-location System (고정밀 위치인식 시스템에서의 위치 추적편이 완화를 통한 이동 로봇의 효율적 위치 추정)

  • Kim, Gon-Woo;Lee, Sang-Moo;Yim, Chung-Hieog
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.8
    • /
    • pp.752-759
    • /
    • 2008
  • In this paper, we propose a high accurate geo-location system based on a single base station, where its location is obtained by Time-of-Arrival(ToA) and Direction-of-Arrival(DoA) of the radio signal. For estimating accurate ToA and DoA information, a MUltiple SIgnal Classification(MUSIC) is adopted. However, the estimation of ToA and DoA using MUSIC algorithm is a time-consuming process. The position tracking bias is occurred by the time delay caused by the estimation process. In order to mitigate the bias error, we propose the estimation method of the position tracking bias and compensate the location error produced by the time delay using the position tracking bias mitigation. For accurate self-localization of mobile robot, the Unscented Kalman Filter(UKF) with position tracking bias is applied. The simulation results show the efficiency and accuracy of the proposed geo-location system and the enhanced performance when the Unscented Kalman Filter is adopted for mobile robot application.

A Novel Hearability Enhancement Method for Forward-Link Multilateration Using OFDM Signal

  • Park, Ji-Won;Lim, Jeong-Min;Lee, Kyu-Jin;Sung, Tae-Kyung
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.3
    • /
    • pp.638-648
    • /
    • 2013
  • Together with the GPS-based approach, geo-location through mobile communication networks is a key technology for location-based service. To save the cost, most geo-location system is implemented on the existed network service, which has a cellular structure. Still, multilateration is limited in cellular structure because it is difficult for the mobile terminal to acquire distance measurements from multiple base stations. This low hearability in the receiver is caused by co-channel interference and multipath environment. Therefore, hearability enhancement is necessary for multilateration under multipath and interference environment. Former time domain based hearability methods were designed for real signals. However, orthogonal frequency division multiplexing (OFDM) signal, which its usage has been increased in digital wireless communication, is a complex signal. Thus, different hearability enhancement method is needed for OFDM signals. This paper proposes a hearability enhancement method for forward-link multilateration using OFDM signals, which employ interference cancellation and multipath mitigation. A novel interference cancellation and multipath mitigation strategy for complex-valued OFDM signals is presented that has an iterative structure. Simulation results show that the proposed multilateration method provides the user's position with an accuracy of less than 80m through the mobile WiMAX cellular network in multipath environment.

A Study on Accuracy Analysis and Application of Postion Tracking Technique for Worker Safety Management in Underground Space Construction Field (지하공간 건설시공현장에서의 작업자 안전관리를 위한 위치추적기술 정확도 분석 및 활용 연구)

  • Seol, Moonhyung;Jang, Yonggu;Son, Myungchan;Kang, Injoon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.8
    • /
    • pp.45-51
    • /
    • 2013
  • In the construction site of underground buildings which have severe environment such as dust, noise, vibration, the technology of rescue the builders in the construction site when accident occurs by tracking the location of the builders and express the mission of supervisor smoothly. In this study, in order to acquire the location information of the builders in the construction site of underground buildings by using MEMS INS and air pressure sensor, we firstly performed the field test in construction site, analyzed the location and the elevation accuracy based on the detected results, and then verified its practicality and rationality after all. As a result, we could acquire worker's position-accuracy within 10m in horizontal direction and 4m in vertical direction. Therefore we could judge availability in construction fields of underground structure.

Evaluating a Positioning Accuracy of Roadside Facilities DB Constructed from Mobile Mapping System Point Cloud (Mobile Mapping System Point Cloud를 활용한 도로주변 시설물 DB 구축 및 위치 정확도 평가)

  • KIM, Jae-Hak;LEE, Hong-Sool;ROH, Su-Lae;LEE, Dong-Ha
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.22 no.3
    • /
    • pp.99-106
    • /
    • 2019
  • Technology that cannot be excluded from 4th industry is self-driving sector. The self-driving sector can be seen as a key set of technologies in the fourth industry, especially in the DB sector is getting more and more popular as a business. The DB, which was previously produced and managed in two dimensions, is now evolving into three dimensions. Among the data obtained by Mobile Mapping System () to produce the HD MAP necessary for self-driving, Point Cloud, which is LiDAR data, is used as a DB because it contains accurate location information. However, at present, it is not widely used as a base data for 3D modeling in addition to HD MAP production. In this study, MMS Point Cloud was used to extract facilities around the road and to overlay the location to expand the usability of Point Cloud. Building utility poles and communication poles DB from Point Cloud and comparing road name address base and location, it is believed that the accuracy of the location of the facility DB extracted from Point Cloud is also higher than the basic road name address of the road, It is necessary to study the expansion of the facility field sufficiently.

Development of a Polynomial Correction Program for Accuracy Improvement of the Geopositioning of High Resolution Imagery (고해상도 위성영상의 지상위치 정확도 개선을 위한 다항식 보정 프로그램의 개발)

  • Lee, Jin-Duk;So, Jae-Kyeong
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2007.04a
    • /
    • pp.135-140
    • /
    • 2007
  • Due to the expensiveness of IKONOS Pro and Precision Products, it is attractive to use the low-cost IKONOS Geo Product with vendor-provided RPCs to produce highly accurate mapping products. The imaging geometry of IKONOS high-resolution imagery is described by RFs instead of rigorous sensor models. This paper presents four different models defined respectively in object space and image space to improve the accuracies of the RF-derived ground coordinates. The four models include the offset model, the scale & offset model, the affine model and the 2nd-order polynomial model. Different configurations of ground control points (GCPs) are carefully examined to evaluate the effect of the GCPs arrangement on the accuracy of ground coordinates. The experiment also evaluates the effect of different cartographic parameters such as the number location, and accuracy of GCPs on the accuracy of geopositioning.

  • PDF

A study on the transformation of cadastral map using Geo-Spatial Information System (지형공간정보체계를 활용한 지적도의 변환에 관한 연구)

  • Kim, Jung-Sik
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.8 no.1 s.15
    • /
    • pp.111-120
    • /
    • 2000
  • A cadastral map that is base map on Land Information System is divided by two categories, graphical and digital cadastre. And digital cadastre can be displayed with location coordinates of nodes that depict parcel boundary on digital cadastral records. The transformation of digital cadastral records means that imported text data of node coordinate would be transformed into system data. This study was implemented to search reasons of errors resulted from transformation of graphic data and then to analyze the accuracy in terms of Position and area. For this, checking of software used in Geo-Spatial Information System was implemented at first and it was found that the accuracy is up by using double precision in coordinate transformation. On the position accuracy the errors at nodes was erased during making topology and the errors did not effect other nodes. On the area may the area errors because of being in error limit of allowable area had no problems in using of system.

  • PDF