• Title/Summary/Keyword: Genomic library

Search Result 284, Processing Time 0.02 seconds

Cloning of Mouse AQP-CD Gene

  • Jung, Jin-Sup;Kim, Joo-In;Oh, Sae-Ok;Park, Mi-Young;Bae, Hae-Rhan;Lee, Sang-Ho
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.195-200
    • /
    • 1997
  • Water transport in highly-permeable membranes is facilitated by some specialized pathways, which are called aquaporins (AQP). AQP1 (AQP-CHIP) is the first recognized aquaporin identified from red cells and renal proximal tubules. Up until now 4 other aquaporin homologs have been reported. Each aquaporin has its unique tissue distribution and regulatory mechanims. To elucidate molecular mechanisms for their transcription regulation and tissue-specific expression isolation of aquaporin genes is required. To clone promoters of the AQP family mouse genomic library was screened by the 1st exon-specific probe of AQP4, and 5 different plaques were positively hybridized. Phage DNAs were purified and characterized by restriction mapping and sequencing. One of them is the mouse AQP-CD gene. The gene was consisted of 4 exons and the exon-intron boundaries of mouse AQP-CD gene were identified at identical positions in other related genes. The 5'-flanking region of AQP-CD gene contains one classic TATA box, a GATA consensus sequence, an E-box and a cyclic AMP-responsive element. The cloning of the mouse AQP-CD gene, of which product is expressed in the collecting duct and is responsible for antidiuresis by vasopressin, will contribute to understand the molecular mechanisms of tissue-specific expression and regulation of AQP-CD gene under various conditions.

  • PDF

Gene Cloning, Expression, and Characterization of a New Carboxylesterase from Serratia sp. SES-01: Comparison with Escherichia coli BioHe Enzyme

  • Kwon, Min-A;Kim, Hyun-Suk;Oh, Joon-Young;Song, Bong-Keun;Song, Jae-Kwang
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.2
    • /
    • pp.147-154
    • /
    • 2009
  • The carboxylesterase-encoding gene(bioHs) of a newly isolated strain, Serratia sp. SES-01, was cloned from the genomic DNA library by detecting formation of transparent halo around the colony on LB-tributyrin agar plates. The amino acid sequence of BioHs was highly similar to the members of the BioH enzyme family involved in the biotin biosynthetic pathway; it showed the highest similarity(91%) with that of Serratia proteamaculans. To compare BioHs with other BioH enzymes, the relatively well-known bioHe gene of E. coli was cloned with PCR. After we achieved high-level expression of soluble BioHs and BioHe through the exploration of different culture conditions, the purified BioHs and BioHe enzymes were characterized in terms of specificity, activity, and stability. BioHe was generally more robust to a change in temperature and pH and an addition of organic solvents than BioHs. The two enzymes exhibited a strong preference for carboxylesterase rather than for thioesterase and were optimal at relatively low temperatures($20-40^{\circ}C$) and alkaline pHs(7.5-9.0). The results in this study strongly suggested that both the BioHs and BioHe enzymes would be potential candidates for use as a carboxylesterase in many industrial applications.

Characterization of the pcbD Gene Encoding 2-Hydroxy-6-Ox0-6-Phenylgexa-2,4-Dienoate Hydrolase from Pseudomonas sp. P20

  • Lim, Jong-Chul;Lee, Jeong-Rai;Lim, Jai-Yun;Min, Kyung-Rak;Kim, Chi-Kyung;Ki, Young-Soo
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.2
    • /
    • pp.258-263
    • /
    • 2000
  • 2-Hydroxy-6-oxo-6phenylhexa-2,4-dienoate (HOPDA) hydrolase catalyzes the hydrolytic cleavage of HOPDA to bemzpate and 2-hydroxypenta-2, 4-dienoate (HPD) during microbial catabolism of biphenyl and polychlorinated biphenyls. A HOPDA hydrolase gene (pcbD) was isolated from the genomic library of Pseudomonas sp. P20 and designated as pCNUO1201; a 7.5-kb XbaI DNA fragment from Pseudomonas sp. P20 was inserted into the pBluescript SK(+) XbaI site. E. coli HB101 harboring pCNU1201 exhibited HOPDA hydrolase activity. The open reading frame (ORF) corresponding to the pcbD gene consisted of 855 base pairs with an ATG initiation codon and a TGA termination codon. The ORF was preceded by a rebosome-binding sequence of 5'-TGGAGC-3' and its G+C content was 55 mol%. The pcbD gene of Pseudomonas sp. P20 was located immedeately downstream of the pcbC gene encoding 2,3- dihydroxybiphenyl 1,2-dioxygenase, and approximately 4-kb upstream of the pcbE gene encoding HPD hydratase. The pcbK gene was able to encode a polypeptide with a molecular weight of 31,732 containing 284 amino acid residues. The deduced amino acid sequence of the HOPDA hydrolase of Pseudomonas sp. P20 exhibited high identity (62%) with those of the HOPDA hydrolases of P. putida KF715, P. pseudoalcaligenes KF707, and Burkholderia cepacia LB400, and also significant homology with those of other hydrolytic enzymes including esterase, transferase, and peptidase.

  • PDF

No Genetic Differentiation of Elaphe schrenckii Subspecies in Korea Based on 9 Microsatellite Loci

  • An, Jung-Hwa;Park, Dae-Sik;Lee, Jung-Hyun;Kim, Kyung-Seok;Lee, Hang;Min, Mi-Sook
    • Animal Systematics, Evolution and Diversity
    • /
    • v.26 no.1
    • /
    • pp.15-19
    • /
    • 2010
  • The Russian ratsnake, Elaphe schrenckii, is found in Russia, China, and Korea, and is considered to be an endangered species by the Ministry of Environment in South Korea. Due to habitat loss and use in oriental medicine, their population has been severely decimated. In South Korea, two subspecies of E. schrenckii has been defined according to body color: E. s. schrenckii (blackish) and E. s. anomala (yellow-brownish). Molecular genetic studies on Elaphe schrenckii are very scarce and the taxonomy of Elaphe schrenckii subspecies is uncertain. From the present study, we attempted to identify the genetic differences of these two subspecies using species-specific microsatellites developed from the genomic library of E. schrenckii. Nine polymorphic loci were tested on 19 individuals from E. s. schrenckii (n=10) and E. s. anomala (n=9) in South Korea. The mean number of alleles was 3.78 in E. s. schrenckii and 4.11 in E. s. anomala. The average expected heterozygosity was 0.542 and 0.511 in E. s. schrenckii and E. s. anomala, respectively. We found a lack of genetic structure between two subspecies ($F_{ST}=0.016$) and no genetic discrimination between two subspecies was found. Based on the present findings by microsatellites, two subspecies can be considered as one species, E. schrenckii. However, further investigations on taxonomical status using mitochondrial and nuclear DNA sequences need to be performed and morphological & ecological data should be revised. The genetic markers should benefit future studies of the endangered species of other Elaphe species for the study of genetic diversity and potential conservation management.

Molecular Approaches to Determine the Character of Serratia marcescens Associated with the Insect Pathogenicity to Brown Planthopper (Serratia marcescens의 곤충 병원성 관련형질 탐색을 위한 분자생물학적 연구)

  • 김희규;배동원;박진희;윤한대
    • Korean journal of applied entomology
    • /
    • v.32 no.3
    • /
    • pp.330-337
    • /
    • 1993
  • A bacterium, pathogenic to Nilaparvata lugens Stal. causing high mortality in 3~5 days, were selected and identified as Serratuz marcescens biotype A2a which is not a nosocomlally infective strain. In order to determine the characters of Serratia marcesce'1lS associated with insect pathogenicity, Tn5 mutagenesis was carried out by conjugating with E. coli pJB4J1. Transconjugants were plate-assayed for missing chitinase, protease and DNase activity. A protease negative mutant was selected for missing JOseet pathogenicity. SEM and TEM revealed the presence of bacterial cells in the epithelial tissue of inner abdomal tissue of the hypodermic layer of abdomen. Such a colonization was limmited to the subjacent tissue inside the intacL cuticular epidermis. These observation supported our result of pathogenicity tests of transconjugants.

  • PDF

Development and validation of SSR markers in Eleutherococcus senticosus

  • Lee, Kyung Jun;An, Yong-Jin;Ham, Jin-Kwan;Ma, Kyung-Ho;Lee, Jung-Ro;Cho, Yang-Hee;Lee, Gi-An
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.84-84
    • /
    • 2017
  • Eleutherococcus senticosus (Siberian ginseng) is an important medicinal tree found in Russian taiga, and northern regions of Korea, Japan, and China. In this study, we analyzed the genome-wide distribution of microsatellites in E. senticosus using developed SSR markers. A total of 711 clones from an SSR-enriched genomic DNA library were sequenced, of which 47 clones (6.6%) were redundant. Of the 664 independent clones, only 12 polymorphic SSR markers were obtained, which also revealed successful amplicons in E. senticosus accessions. Using the developed SSR markers, we estimated genetic diversity and population structure among 131 E. senticosus accessions in Korea and China. The number of alleles ranged from 2 to 11, with an average of 7.4 alleles. The mean values of observed heterozygosity ($H_O$) and expected heterozygosity ($H_E$) were 0.59 and 0.56, respectively. The average polymorphism information content (PIC) was 0.51 in all 131 E. senticosus accessions. E. senticosus accessions in Korea and China showed a close genetic similarity. Significantly low pairwise genetic divergence was observed between the two regions, suggesting a relatively narrow level of genetic basis among E. senticosus accessions. Our results not only provide molecular tools for genetic studies in E. senticosus but are also helpful for conservation and E. senticosus breeding programs.

  • PDF

Simple sequence repeat marker development from Codonopsis lanceolata and genetic relation analysis

  • Kim, Serim;Jeong, Ji Hee;Chung, Hee;Kim, Ji Hyeon;Gil, Jinsu;Yoo, Jemin;Um, Yurry;Kim, Ok Tae;Kim, Tae Dong;Kim, Yong-Yul;Lee, Dong Hoon;Kim, Ho Bang;Lee, Yi
    • Journal of Plant Biotechnology
    • /
    • v.43 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • In this study, we developed 15 novel polymorphic simple sequence repeat (SSR) markers by SSR-enriched genomic library construction from Codonopsis lanceolata. We obtained a total of 226 non-redundant contig sequences from the assembly process and designed primer sets. These markers were applied to 53 accessions representing the cultivated C. lanceolata in South Korea. Fifteen markers were sufficiently polymorphic, and were used to analyze the genetic relationships between the cultivated C. lanceolata. One hundred three alleles of the 15 SSR markers ranged from 3 to 19 alleles at each locus, with an average of 6.87. By cluster analysis, we detected clear genetic differences in most of the accessions, with genetic distance varying from 0.73 to 0.93. Phylogenic analysis indicated that the accessions that were collected from the same area were distributed evenly in the phylogenetic tree. These results indicate that there is no correlative genetic relationship between geographic areas. These markers will be useful in differentiating C. lanceolata genetic resources and in selecting suitable lines for a systemic breeding program.

Chromosomal Information of 1,144 Korean BAC Clones

  • Park, Mi-Hyun;Lee, Hee-Jung;Kim, Kwang-Joong;Jeon, Jae-Pil;Lee, Hye-Ja;Kim, Jun-Woo;Kim, Hung-Tae;Cha, Hyo-Soung;Kim, Cheol-Hwan;Choi, Kang-Yell;Park, Chan;Oh, Berm-Seok;Kim, Ku-Chan
    • Genomics & Informatics
    • /
    • v.4 no.4
    • /
    • pp.141-146
    • /
    • 2006
  • We sequenced 1,841 BAC clones by terminal sequencing, and 1,830 of these clones were characterized with regard to their human chromosomal location and gene content using Korean BAC library constructed at the Korean Science (KCGS). Sequence analyses of the 1,830 BAC clones was performed for chromosomal assignment: 1,144 clones were assigned to a single chromosome, 190 clones apparently assigned to more than one chromosome, and 496 clones to no chromosome. Evaluating gene content of the 1,144 BAC clones, we found that 706 clones represented 1,069 genes of which 415 genes existed in the BAC clones covering the full sequence of the gene, 180 genes covering a $50%{\sim}99%$, and 474 genes covering less than 50% of the gene coverage. The estimated covering size of the KBAC clones was 73,379 kilobases (kb), in total corresponding to 2.3% of haploid human genome sequence. The identified BAC clones will be a public genomic resource for mapped clones for diagnostic and functional studies by Korean scientists and investigators worldwide.

Cloning and Regulation of Schizosaccharomyces pombe Gene Encoding Ribosomal Protein L11

  • Kim, Hong-Gyum;Lee, Jin-Joo;Park, Eun-Hee;Sa, Jae-Hoon;Ahn, Ki-Sup;Lim, Chang-Jin
    • BMB Reports
    • /
    • v.34 no.4
    • /
    • pp.379-384
    • /
    • 2001
  • The cDNA encoding ribosomal protein was identified from a cDNA library of Schizosaccharomyces pombe. The nucleotide sequence of the 548 by cDNA clone reveals an open reading frame, which encodes a putative protein of 166 amino acids with a molecular mass of 18.3 kDa. The amino acid sequence of the S. pombe L11 protein is highly homologous with those of rat and fruit, while it is clearly less similar to those of prokaryotic counterparts. The 1,044 by upstream sequence, and the region encoding N-terminal 7 amino acids of the genomic DNA were fused into the promoterless $\beta$-galactosidase gene of the shuttle vector YEp357 in order to generate the fusion plasmid pHY L11. Synthesis of $\beta$-galactosidase from the fusion plasmid varied according to the growth curve. It decreased significantly in the growth-arrested yeast cells that were treated with aluminum chloride and mercuric chloride. However, it was enhanced by treatments with cadmium chloride ($2.5\;{\mu}M$), zinc chloride ($2.5\;{\mu}M$), and hydrogen peroxide (0.5 mM). This indicates that the expression of the L,11 gene could be induced by oxidative stress.

  • PDF

Generation of Embryonic Stem Cell-derived Transgenic Mice by Using Tetraploid Complementation

  • Park, S.M.;Song, S.J.;Uhm, S.J.;Cho, S.G.;Park, S.P.;Lim, J.H.;Lee, H.T.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.12
    • /
    • pp.1641-1646
    • /
    • 2004
  • The objective of this study was to generate transgenic mice expressing human resistin gene by using the tetraploidembryonic stem (ES) cell complementation method. Human resistin gene was amplified from human fetal liver cDNA library by PCR, cloned into $pCR^{(R)}$ 2.1 $TOPO^{(R)}$ vector and constructed in pCMV-Tag4C vector. Mammalian expression plasmid containing human resistin was transfected into D3-GL ES cells by Lipofectamine 2,000, and then after 10-12 days of transfection, the human resistin-expressing cells were selected with G418. In order to produce tetraploid embryos, blastomeres of diploid embryos at the two-cell stage were fused with two times of electric pulse using 60 V 30 $\mu$sec (fusion rate: 2,114/2,256, 93.5%) and cultured up to the blastocyst stage (development rate: 1,862/2,114, 94.6%). The selected 15-20 ES cells were injected into tetraploid blastocysts, and then transferred into the uteri of E 2.5 d pseudopregnant recipient mice. To investigate the gestation progress, two E 19.5 mused fetuses were recovered by Cesarean section of which one fetus was confirmed to contain human resistin gene by genomic DNA-PCR. Therefore, our findings demonstrate that tetraploid-ES mouse technology can be considered as a useful tool to produce transgenic mice for the rapid analysis of gene function in vivo.