DOI QR코드

DOI QR Code

No Genetic Differentiation of Elaphe schrenckii Subspecies in Korea Based on 9 Microsatellite Loci

  • An, Jung-Hwa (Research Institute for Veterinary Science, BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University) ;
  • Park, Dae-Sik (Division of Science Education, Kangwon National University) ;
  • Lee, Jung-Hyun (Department of Biology, Kangwon National University) ;
  • Kim, Kyung-Seok (Research Institute for Veterinary Science, BK21 Program for Veterinary Science and College of Veterinary Medicine, Seoul National University) ;
  • Lee, Hang (Conservation Genome Resource Bank for Korean Wildlife (CGRB)) ;
  • Min, Mi-Sook (Conservation Genome Resource Bank for Korean Wildlife (CGRB))
  • Received : 2010.02.19
  • Accepted : 2010.03.11
  • Published : 2010.03.31

Abstract

The Russian ratsnake, Elaphe schrenckii, is found in Russia, China, and Korea, and is considered to be an endangered species by the Ministry of Environment in South Korea. Due to habitat loss and use in oriental medicine, their population has been severely decimated. In South Korea, two subspecies of E. schrenckii has been defined according to body color: E. s. schrenckii (blackish) and E. s. anomala (yellow-brownish). Molecular genetic studies on Elaphe schrenckii are very scarce and the taxonomy of Elaphe schrenckii subspecies is uncertain. From the present study, we attempted to identify the genetic differences of these two subspecies using species-specific microsatellites developed from the genomic library of E. schrenckii. Nine polymorphic loci were tested on 19 individuals from E. s. schrenckii (n=10) and E. s. anomala (n=9) in South Korea. The mean number of alleles was 3.78 in E. s. schrenckii and 4.11 in E. s. anomala. The average expected heterozygosity was 0.542 and 0.511 in E. s. schrenckii and E. s. anomala, respectively. We found a lack of genetic structure between two subspecies ($F_{ST}=0.016$) and no genetic discrimination between two subspecies was found. Based on the present findings by microsatellites, two subspecies can be considered as one species, E. schrenckii. However, further investigations on taxonomical status using mitochondrial and nuclear DNA sequences need to be performed and morphological & ecological data should be revised. The genetic markers should benefit future studies of the endangered species of other Elaphe species for the study of genetic diversity and potential conservation management.

Keywords

References

  1. Burbrink, F., R. Lawson and J. Slowinski, 2000. Mitochondrial DNA phylogeography of the polytypic north American rat snake (Elaphe obsolete): a critique of the subspecies concept. Evolution, 54(6): 2107-2118. https://doi.org/10.1554/0014-3820(2000)054[2107:MDPOTP]2.0.CO;2
  2. Burbrink, F., 2002. Phylogeographic analysis of the cornsnake (Elaphe guttata) complex as inferred from maximum likelihood and Bayesian analyses. Mol. Phylogenet. Evol., 25: 465-476. https://doi.org/10.1016/S1055-7903(02)00306-8
  3. Clark, R., W. Brown, R. Stecher and K. Zamudio, 2008. Integrating individual behavior and landscape genetics: the population structure of timber rattlesnake hibernacula. Mol. Ecol., 17: 719-730. https://doi.org/10.1111/j.1365-294X.2007.03594.x
  4. Dallas, J., F. Marshall, S. Piertney, P. Bacon and P. Racey, 2002. Spatially restricted gene flow and reduced microsatellite polymorphism in the Eurasian otter Lutra lutra in Britain. Con. Genet., 3: 15-28. https://doi.org/10.1023/A:1014259218632
  5. Excoffier, L., G. Laval and S. Schneider, 2005. Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol. Bioinfo. Online, 1: 47-50.
  6. Guo, S. and E. Thompson, 1992. Performing the exact test of Hardy-Weinberg proportions for multiple alleles. Biometrics, 48: 361-372. https://doi.org/10.2307/2532296
  7. Heise, P., L. Maxson, H. Dowling and S. Hedges, 1995. Higherlevel snake phylogeny inferred from mitochondrial DNA sequences of 12S rRNA and 16S rRNA genes. Mol. Biol.Evol., 12(2): 259-265.
  8. Kalinowski, S., M. Taper and T. Marshall, 2007. Revising how the computer program CERVUS accommodates genotyping error increases success in paternity assignment. Mol. Ecol., 16: 1099-1006. https://doi.org/10.1111/j.1365-294X.2007.03089.x
  9. Kim, K., S.U. Stolz, N. Miller, E. Waits, T. Guillemaud, D. Suerford and T. Sappington, 2008. A core set of microsatellite markers for western corn rootworm (Coleoptera: Chrysomelidae) population genetics studies. Envion. Entomol., 37(2): 293-300. https://doi.org/10.1603/0046-225X(2008)37[293:ACSOMM]2.0.CO;2
  10. Kothera, L., E.M. Zimmerman, C.M. Richards and H.M. Savage, 2009. Microsatellite characterization of subspecies and their hybrids in Culex pipiens complex (Diptera: Culicidae) mosquitoes along a north-south transect in the central united states. J. Med. Entomol., 46(2): 236-248. https://doi.org/10.1603/033.046.0208
  11. Manier, M. and S. Arnold, 2005. Population genetic analysis identifies source-sink dynamics for two sympatric garter snake species (Thamnophis elegans and Thamnophis sirtalis). Mol. Ecol., 14: 3965-3976. https://doi.org/10.1111/j.1365-294X.2005.02734.x
  12. Meredith, E.P., J.A. Rodzen, J.D. Banks, R. Schaefer, H.B. Ernest, T.R. Famula and B.P. May, 2007. Microsatellite analysis of three subspecies of elk (Cervus elaphus) in California. J. Mammalogy, 88(3): 801-808. https://doi.org/10.1644/06-MAMM-A-014R.1
  13. Murphy, M.J., 2009. Using microsatellite DNA to genetically identify a potential hybrid population of endangered massasauga rattlesnakes (Sistrurus catenatus) in north central Missouri. PhD Thesis. Ohio State Univ., pp. 1-24.
  14. Mylecrain, K., N. Bulgin, H. Gibbs, P. Vickery and D. Perkins, 2008. Limited genetic structure and evidence for dispersal among populations of the endangered Florida grasshopper sparrow, Ammodramus savannarum floridanus. Conserv. Genet., 9: 1633-1638. https://doi.org/10.1007/s10592-008-9518-0
  15. National Institute of Environmental Research in South Korea, 2006. Guidelines of the third national ecosystem survey, p. 189.
  16. Palo, J., H. Makinen, E. Helle, O. Stenman and R. Vainola, 2001. Microsatellite variation in ringed seals (Phoca hispida): genetic structure and history of the Baltic sea population.Hered., 86: 609-617. https://doi.org/10.1046/j.1365-2540.2001.00859.x
  17. Park, D., 2010. Annual report of developing standard rearing protocols of endangered endemic reptiles and the study of their basic ecology. Kangwon National University, pp. 10-61.
  18. Pelz-Serrano, K., A. Munguia-Vega, A. Piaggio, M. Neubaum, P. Munclinger, A. Partl, C. Riper and M. Culver, 2009. Development of nine new microsatellite loci for the American beaver, Castor Canadensis (Rodentia: Castoridae), and cross-species amplification in the European beaver, Castor fiber. Mol. Ecol. Res., 9: 551-554. https://doi.org/10.1111/j.1755-0998.2008.02364.x
  19. Raymond, M. and F. Rousset, 1995. GENEPOP v3.2: population genetics software for exact tests and ecumenicism. J. Hered., 86: 248-249. https://doi.org/10.1093/oxfordjournals.jhered.a111573
  20. Rice, W., 1989. Analyzing tables of statistical tests. Evolution, 43: 223-225. https://doi.org/10.2307/2409177
  21. Selkoe, A. and T. Robert. 2006. Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecology Letters, 9: 615-629. https://doi.org/10.1111/j.1461-0248.2006.00889.x
  22. Templeton, A., 2006. Population genetics and microevolutionary theory. John Wiley & Sons, New Jersey.
  23. Tzika, A., S. Koenig, R. Miller, G. Garcia and M. Milinkovitch, 2008. Population structure of an endemic vulnerable species, the Jamaican boa (Epicrates subflavus). Mol. Ecol., 17: 533-544. https://doi.org/10.1111/j.1365-294X.2007.03588.x
  24. Utiger, U., N. Helfenberger, B. Schatti, C. Schmidt, M. Ruf and V. Ziswiler, 2002. Molecular systematic and phylogeny of old and new world ratsnakes, Elaphe AUCT., and related genera (Reptilia, Squamata, Colubridae). Rus. J. Herpetol., 9(2): 105-124.
  25. Woo, H., S. Ryu, K. Jang, E. Choi, S. Kim and U. Hwang, 2009. Mitochondrial genome of the Korean colubrid snake Elaphe schrenckii (Reptilla; Squamata; Colubridae). Mitochondrial DNA, 20(5-6): 107-109. https://doi.org/10.3109/19401730903137088
  26. Zane, L., L. Bargelloni and T. Patarnello, 2002. Strategies for microsatellite isolation: a review. Mol. Ecol., 11: 1-16. https://doi.org/10.1046/j.0962-1083.2001.01418.x
  27. Zhang, D.X. and G.M. Hewitt, 2003. Nuclear DNA analyses in genetic studies of population: practice, problems and prospects. Mol. Ecol., 12: 563-584. https://doi.org/10.1046/j.1365-294X.2003.01773.x
  28. Zoological society of London, 2006. Mongolian Red List of Reptiles and Amphibians. Regent's Park, London.