• 제목/요약/키워드: Genomic instability

검색결과 55건 처리시간 0.024초

Diabetes - Increased Risk for Cancers through Chromosomal Aberrations?

  • Anand, Sudhaa;Nath, Badari;Saraswathy, Radha
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제15권11호
    • /
    • pp.4571-4573
    • /
    • 2014
  • Diabetes, a comprehensive genetic disease, is principally due to the deregulation of glucose levels in the blood. In addition to contemporary epidemiological studies, systematic substantiation suggests that long-term diabetes leads to cancers due to a variety of reasons. In this study, blood samples were collected with informed consent from confirmed type I diabetic (T1DM, n=25) and type II Diabetic patients (T2DM, n=25) with equal numbers of controls. Further depending on the lifestyle habits they were subdivided into smokers/non-smokers and alcoholics/non-alcoholics. Chromosomal assays were performed for these cases and it was found that there was a significant increase in chromosomal aberration frequency in diabetic patient groups who are exposed to smoking and alcohol than that of normal diabetic groups (T1DM and T2DM). On the other hand, patient groups who were non-smoking and non-alcoholics also showed higher chromosomal aberrations when compared to that of controls. While the mechanisms for these increased chromosomal aberrations in diabetic groups are not clear, they may be due to increased oxidative stress leading to oxidative damage and resulting in genomic instability, which in turn may contribute to an increased risk for cancer.

Methyl Isocyanate and Carcinogenesis: Bridgeable Gaps in Scientific Knowledge

  • Senthilkumar, Chinnu Sugavanam;Sah, Nand Kishore;Ganesh, Narayanan
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권6호
    • /
    • pp.2429-2435
    • /
    • 2012
  • Methyl isocyanate may have a role in cancer etiology, although the link is unclear. There is evidence in the literature that it can induce cancer in animals but the carcinogenic potency is weak. Pheochromocytoma of adrenal medulla and acinar cell tumors of pancreas have been observed in methyl isocyanate exposed animals. Conversely, emerging data from population-based epidemiological studies are contradictory since there is no evidence of such cancers in methyl isocyanate exposed humans. Recently, we reported a high prevalence of breast and lung cancers in such a population in Bhopal. In vitro findings appearing in the latest scientific literature suggest that genomic instability is caused by methyl isocyanate analogs in lung, colon, kidney, ovary epithelial cells, and that hepatocytes may undergo oncogenic transformation, have obvious implications. The conflicting information prompted us to present this update over the last three decades on methyl isocyanate-induced cancers after an extensive literature search using PubMed. While the pertinent literature remains limited, with a scarcity of strong laboratory analyses and field-epidemiological investigations, our succinct review of animal and human epidemiological data including in vitro evidences, should hopefully provide more insight to researchers, toxicologists, and public health professionals concerned with validation of the carcinogenicity of methyl isocyanate in humans.

Formation of a New Solo-LTR of the Human Endogenous Retrovirus H Family in Human Chromosome 21

  • Huh, Jae-Won;Kim, Dae-Soo;Ha, Hong-Seok;Kim, Tae-Hong;Kim, Wook;Kim, Heui-Soo
    • Molecules and Cells
    • /
    • 제22권3호
    • /
    • pp.360-363
    • /
    • 2006
  • Human endogenous retroviruses (HERVs) contribute to various kinds of genomic instability via rearrangement and retrotransposition events. In the present study the formation of a new human-specific solo-LTR belonging to the HERV-H family (AP001667; chromosome 21q21) was detected by a comparative analysis of human chromosome 21 and chimpanzee chromosome 22. The solo-LTR was formed as a result of an equal homologous recombination excision event. Several evolutionary processes have occurred at this locus during primate evolution, indicating that mammalian-wide interspersed repeat (MIR) and full-length HERV-H elements integrated into hominoid genomes after the divergence of Old World monkeys and hominoids, and that the solo-LTR element was created by recombination excision of the HERV-H only in the human genome.

Chromosome Imbalances and Alterations of AURKA and MYCN Genes in Children with Neuroblastoma

  • Inandiklioglu, Nihal;Yilmaz, Sema;Demirhan, Osman;Erdogan, seyda;Tanyeli, Atila
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제13권11호
    • /
    • pp.5391-5397
    • /
    • 2012
  • Background: Neuroblastoma (NB), like most human cancers, is characterized by genomic instability, manifested at the chromosomal level as allelic gain, loss or rearrangement. Genetics methods, as well as conventional and molecular cytogenetics may provide valuable clues for the identification of target loci and successful search for major genes in neuroblastoma. We aimed to investigate AURKA and MYCN gene rearrangements and the chromosomal aberrations (CAs) to determine the prognosis of neuroblastoma. Methods: We performed cytogenetic analysis by G-banding in 25 cases [11 girls (44%) and 14 boys (66%)] and in 25 controls. Fluorescence in situ hybridization (FISH) with AURKA and MYCN gene probes was also used on interphase nuclei to screen for alterations. Results: Some 18.4% of patient cells exhibited CAs., with a significant difference between patient and control groups in the frequencies (P<0.0001). Some 72% of the cells had structural aberrations, and only 28% had numerical chnages in patients. Structural aberrations consisted of deletions, translocations, breaks and fragility in various chromosomes, 84% and 52% of the patients having deletions and translocations, respectively. Among these expressed CAs, there was a higher frequency at 1q21, 1q32, 2q21, 2q31, 2p24, 4q31, 9q11, 9q22, 13q14, 14q11.2, 14q24, and 15q22 in patients. 32% of the patients had chromosome breaks, most frequently in chromosomes 1, 2, 3, 4, 5, 8, 9, 11, 12, 19 and X. The number of cells with breaks and the genomic damage frequencies were higher in patients (p<0.001). Aneuploidies in chromosomes X, 22, 3, 17 and 18 were most frequently observed. Numerical chromosome abnormalities were distinctive in 10.7% of sex chromosomes. Fragile sites were observed in 16% of our patients. Conclusion: Our data confirmed that there is a close correlation between amplification of the two genes, amplification of MYCN possibly contributing significantly to the oncogenic properties of AURKA. The high frequencies of chromosomal aberrations and amplifications of AURKA and MYCN genes indicate prognostic value in children with neuroblastomas and may point to contributing factors in their development.

The Codon 399 Arg/Gln XRCC1 Polymorphism is Associated with Lung Cancer in Indians

  • Natukula, Kirmani;Jamil, Kaiser;Pingali, Usha Rani;Attili, Venkata Satya Suresh;Madireddy, Umamaheshwar Rao Naidu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권9호
    • /
    • pp.5275-5279
    • /
    • 2013
  • Background: The XRCC1 (X-ray repair cross complimenting group-I) gene in BER (base excision repair) pathway is essential for DNA repair process. Polymorphisms in this gene are associated with variations in the repair efficiency which might predispose individuals to development of various cancers. Two variants of XRCC1gene (at codon 399), Gln/Gln and Arg/Gln, have been shown to be related to lowered DNA repair capacity and increased genomic instability in multiple studies. Hence our investigation focused on genotyping these variants to correlate with other multiple risk factors in lung cancer (NSCLC) patients since we hypothesized that these variants of the XRCC1 gene might influence disease susceptibility. Materials and Methods: We examined the frequency of the polymorphism in one hundred cases and an almost equal number of controls after recording their demographics with a structured questionnaire. Genomic DNA from blood samples was extracted for PCR studies, followed by RFLP to determine the variants. The significance of the data was statistically analyzed. Results: The three genotypes in cases and controls were Arg/Arg (40% and 54.45%); Gln/Gln (19% and 9.90%), and Arg/Gln (41.0% and 35.64%) respectively. Among these 3 genotypes, we found Gln/Gln and Arg/Gln to show association with lung cancer. Correlating these genotypes with several parameters, we also found that these two variants were associated with risk in males (p<0.05) and with smoking habits (p<0.05). In females Arg/Gln genotype showed association with stage of the disease (p=0.04). This is the first report in South Indian scenario where Arg399Gln genotypes were found to be associated with stage of the disease in females. Conclusions: It is concluded that XRCC1 genotypes Gln/Gln and Arg/Gln may influence cancer susceptibility in patients with smoking habits and these functional SNPs in XRCC1 gene may act as attractive candidate biomarkers in lung cancer for diagnosis and prognosis.

TAR cloning 법에 의한 인간 및 마우스의 상동성 HPRT 유전자의 분리 (Isolation of Human and Mouse Orthologue HPRT Genes by Transformation-Associated Recombination (TAR) cloning)

  • 도은주;김재우;정정남;박인호;임선희
    • 생명과학회지
    • /
    • 제16권6호
    • /
    • pp.1036-1043
    • /
    • 2006
  • TAR (Transformation-Associated Recombination) cloning법은 복잡한 고등생물의 게놈으로부터 유전자나 특정 염색체 부위를 선별적 분리를 가능하게 한다. 이 방법은 목적으로 하는 염색체 부위의 주변에 존재하는 비교적 짧은 게놈 염기서열에 대한 정보를 필요로 한다. 이 기술은 출아효모의 spheroplasts 형질전환 동안 목적 유전자를 포함한 게놈 DNA와 그 유전자의 5' 또는 3' 말단 서열 (hook)을 포함하고 있는 TAR vector 사이에 일어나는 상동성 재조합에 의해 이루어진다. 본 연구에서는 TAR cloning 법을 상동성 유전자의 분리에 사용할 수 있는가를 조사하기 위해, 연간과 마우스 게놈의 HPRT 유전자를 선택하였다. 그 결과, 인간과 마우스의 게놈으로부터의 HPRT 유전자의 분리 빈도는 TAR vector로서 hHPRT hook 혹은 mHPRT hook을 사용한 경우에 거의 동일하게 나타났다. 또한 mHPRT 유전자의 gap 부분의 염기서열을 결정하여, 이 부분에 염기서열의 불안정의 요인이 되는 비정상적 특성을 발견하였다. 결론적으로 TAR cloning법을 이용하여 다른 이종 간의 게놈으로부터 상동성 유전자 즉 orthologue의 분리가 가능하였다. 더욱이 TAR cloning 시스템을 이용하여 고등동물 게놈 상에 남아있는 gap 부분을 메움으로서 고등동물의 모든 유전자들의 확인이 가속화될 수 있을 것으로 사료된다.

Multi-Parameter Approach for Evaluation of Genomic Instability in the Polycystic Ovary Syndrome

  • Sekar, Nishu;Nair, Manju;Francis, Glory;Kongath, Parvathy Raj;Babu, Sandhya;Raja, Sudhakaran;Gopalakrishnan, Abilash Valsala
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제16권16호
    • /
    • pp.7129-7138
    • /
    • 2015
  • Background: The polycystic ovary syndrome (PCOS), characterized by hyperandrogenism and chronic anovulation, is a common endocrine disorder in women. PCOS, which is associated with polycystic ovaries, hirsutism, obesity and insulin resistance, is a leading cause of female infertility. In this condition there is an imbalance in female sex hormones. All the sequelae symptoms of PCOS gradually lead to cancer in the course of time. It is heterogeneous disorder of unknown etiology so it is essential to find the exact cause. Materials and Methods: In this study both invasive and non-invasive techniques were employed to establish the etiology. Diagnosis was based on Rotterdam criteria (hyperandrogenism, ovulatory dysfunction, PCOM) and multiparameters using buccal samples and dermatoglypic analysis and cytogenetic study for 10 cases and four age and sex matched controls. Results: In clinical analysis we have observed the mean value of total testosterone level was 23.6nmol/L, total hirsutism score was from 12-24, facial acne was found in in 70% patients with 7-12 subcapsular follicular cysts, each measuring 2-8 mm in diameter. In dermatoglypic analysis we observed increases in mean value ($45.9^{\circ}$) of ATD angle when compared with control group and also found increased frequency (38%) of Ulnar loops on both fingers (UU), (18%) whorls on the right finger and Ulnar loop on left finger (WU) and (16%) arches on right and left fingers (AA) were observed in PCOS patients when compared with control subjects. Features which could be applied as markers for PCOS patients are the presence of Ulnar loops in middle and little fingers of right and left hand. The buccal micronucleus cytome assay in exfoliated buccal cells, we found decrease in frequency of micronuclei and significant increases in frequency of karyolysed nuclei in polycystic ovarian syndrome patients. Chromosome aberration analysis revealed a significant increase in frequency of chromosome aberrations (CAs) in PCOS patients when compared with controls. Conclusions: From this present work it can be concluded that non-invasive technique like dermatoglypics analysis and buccal micronucleus cytome assays with exfoliated buccal cell can also be effective biomarkers for PCOS, along with increased CAs in lymphocytes as a sign of genetic instability. There is a hypothesis that micronuclei and chromosomal aberrations could have a predictive value for cancer. From this present work it can be concluded to some extent that non-invasive technique like dermatoglypics and buccal cell analysis can also be effective for diagnosis.

Deletion of GSTM1 and T1 Genes as a Risk Factor for Development of Acute Leukemia

  • Dunna, Nageswara Rao;Vure, Sugunakar;Sailaja, K.;Surekha, D.;Raghunadharao, D.;Rajappa, Senthil;Vishnupriya, S.
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제14권4호
    • /
    • pp.2221-2224
    • /
    • 2013
  • The glutathione S-transferases (GSTs) are a family of enzymes involved in the detoxification of a wide range of chemicals, including important environmental carcinogens, as well as chemotherapeutic agents. In the present study 294 acute leukemia cases, comprising 152 of acute lymphocytic leukemia (ALL) and 142 of acute myeloid leukemia, and 251 control samples were analyzed for GSTM1 and GSTT1 polymorphisms through multiplex PCR methods. Significantly increased frequencies of GSTM1 null genotype (M0), GSTT1 null genotype (T0) and GST double null genotype (T0M0) were observed in the both ALL and AML cases as compared to controls. When data were analyzed with respect to clinical variables, increased mean levels of WBC, Blast %, LDH and significant reduction in DFS were observed in both ALL and AML cases with T0 genotype. In conclusion, absence of both GST M & GST T might confer increased risk of developing ALL or AML. The absence of GST enzyme might lead to oxidative stress and subsequent DNA damage resulting in genomic instability, a hallmark of acute leukemia. The GST enzyme deficiency might also exert impact on clinical prognosis leading to poorer DFS. Hence GST genotyping can be made mandatory in management of acute leukemia so that more aggressive therapy such as allogenic stem cell transplantation may be planned in the case of patients with a null genotype.

Effects on G2/M Phase Cell Cycle Distribution and Aneuploidy Formation of Exposure to a 60 Hz Electromagnetic Field in Combination with Ionizing Radiation or Hydrogen Peroxide in L132 Nontumorigenic Human Lung Epithelial Cells

  • Jin, Hee;Yoon, Hye Eun;Lee, Jae-Seon;Kim, Jae-Kyung;Myung, Sung Ho;Lee, Yun-Sil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제19권2호
    • /
    • pp.119-124
    • /
    • 2015
  • The aim of the present study was to assess whether exposure to the combination of an extremely low frequency magnetic field (ELF-MF; 60 Hz, 1 mT or 2 mT) with a stress factor, such as ionizing radiation (IR) or $H_2O_2$, results in genomic instability in non-tumorigenic human lung epithelial L132 cells. To this end, the percentages of G2/M-arrested cells and aneuploid cells were examined. Exposure to 0.5 Gy IR or 0.05 mM $H_2O_2$ for 9 h resulted in the highest levels of aneuploidy; however, no cells were observed in the subG1 phase, which indicated the absence of apoptotic cell death. Exposure to an ELF-MF alone (1 mT or 2 mT) did not affect the percentages of G2/M-arrested cells, aneuploid cells, or the populations of cells in the subG1 phase. Moreover, when cells were exposed to a 1 mT or 2 mT ELF-MF in combination with IR (0.5 Gy) or $H_2O_2$ (0.05 mM), the ELF-MF did not further increase the percentages of G2/M-arrested cells or aneuploid cells. These results suggest that ELF-MFs alone do not induce either G2/M arrest or aneuploidy, even when administered in combination with different stressors.

대장균 내에서 불안정한 Minisatellite DNA 영역의 클론닝 및 DNA 염기서열 결정 (Cloning and DNA Sequencing for Unstable Minisatellites DNA Regions in E. coli.)

  • 임선희;김재우;김광섭;정윤희;윤세련;배호정;안태진;선우양일
    • 미생물학회지
    • /
    • 제40권2호
    • /
    • pp.65-72
    • /
    • 2004
  • 진핵생물의 특정 염기배열을 원핵생물 내에서 증폭시킬 때 불안정성이 비교적 빈번히 관찰되어진다. 특히 long inverted repeats나 AT-rich sequences그리고 Z-DNA와 같은 구조를 지닌 염기배열은 대장균 내에서 매우 불안정하다. 이러한 염기서열은 대장균 내에서 부분적으로 결실되거나 완전히 손실된다. 본 연구실에서 human SCKI 유전자에 존재하는 몇 개의 tandem repeat (TR)에 대하여 다형성을 조사하였을 때, 어떤 TR 부분은 플라스미드로부터 빈번히 결실되어 그에 대한 염기서열 결정이 어려웠다. 그 결과 이러한 부분은 클론닝 될 수 없는 염기서열로 남게 되었다. 본 연구에서는 클론닝이 어려운 두 개의 TR 영역을 저온에서 클론닝하고 nebulizer나 sonicator를 이용하여 두 개의 library를 만들어 DNA 염기서열을 결정하였다. 이러한 연구는 복잡한 고등생물의 게놈연구에서 불안정한 게놈부분의 염기서열을 결정하는데 도움을 줄 것으로 사료된다.