Formation of a New Solo-LTR of the Human Endogenous Retrovirus H Family in Human Chromosome 21

  • Huh, Jae-Won (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Dae-Soo (PBBRC, Interdisciplinary Research Program of Bioinformatics, Pusan National University) ;
  • Ha, Hong-Seok (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Tae-Hong (Division of Biological Sciences, College of Natural Sciences, Pusan National University) ;
  • Kim, Wook (Department of Biological Sciences, Dankook University) ;
  • Kim, Heui-Soo (Division of Biological Sciences, College of Natural Sciences, Pusan National University)
  • Received : 2006.07.04
  • Accepted : 2006.09.27
  • Published : 2006.12.31

Abstract

Human endogenous retroviruses (HERVs) contribute to various kinds of genomic instability via rearrangement and retrotransposition events. In the present study the formation of a new human-specific solo-LTR belonging to the HERV-H family (AP001667; chromosome 21q21) was detected by a comparative analysis of human chromosome 21 and chimpanzee chromosome 22. The solo-LTR was formed as a result of an equal homologous recombination excision event. Several evolutionary processes have occurred at this locus during primate evolution, indicating that mammalian-wide interspersed repeat (MIR) and full-length HERV-H elements integrated into hominoid genomes after the divergence of Old World monkeys and hominoids, and that the solo-LTR element was created by recombination excision of the HERV-H only in the human genome.

Keywords

Acknowledgement

Supported by : Pusan National University

References

  1. Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, W., et al. (1997) Gapped Blast and PSI-BLAST: a new generation of protein database search program. Nucleic Acids Res. 25, 3389−3402 https://doi.org/10.1093/nar/25.17.3389
  2. Belshaw, R., Dawson, A. L., Woolven-Allen, J., Redding, J., Burt, A., et al. (2005) Genomewide screening reveals high levels of insertional polymorphism in the human endogenous retrovirus family HERV-K(HML2): implications for presentday activity. J. Virol. 79, 12507−12514 https://doi.org/10.1128/JVI.79.19.12507-12514.2005
  3. de Parseval, N., Alkabbani, H., and Heidmann, T. (1999) The long terminal repeats of the HERV-H human endogenous retrovirus contain binding sites for transcriptional regulation by the Myb protein. J. Gen. Virol. 80, 841−845
  4. Feuchter, A. and Mager, D. L. (1990) Functional heterogeneity of a large family of human LTR-like promoters and enhancers. Nucleic Acids Res. 18, 1261−1270 https://doi.org/10.1093/nar/18.5.1261
  5. Han, H. Y., Ro, K. E., and McPheron, B. A. (2006) Molecular phylogeny of the subfamily Tephritinae (Diptera: Tephritidae) based on mitochondrial 16S rDNA sequences. Mol. Cells 22, 78−88
  6. Hirose, Y., Takamatsu, M., and Harada, F. (1993) Presence of env genes in members of the RTVL-H family of human endogenous retrovirus-like elements. Virology 192, 52−61 https://doi.org/10.1006/viro.1993.1007
  7. Huh, J. W., Hong, K. W., Yi, J. M., Kim, T. H., Takenaka, O., et al. (2003) Molecular phylogeny and evolution of the human endogenous retrovirus HERV-W LTR family in hominoid primates. Mol. Cells 15, 122−126
  8. Hughes, J. F. and Coffin, J. M. (2004) Human endogenous retrovirus K solo-LTR formation and insertional polymorphisms: implications for human and viral evolution. Proc. Natl. Acad. Sci. USA 101, 1668−1672
  9. International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409, 860−921
  10. Jurka, J. (2000) Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16, 418−420
  11. van de Lagemaat, L. N., Landry, J. R., Mager, D. L., and Medstrand, P. (2003) Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions, Trends Genet. 19, 530−536 https://doi.org/10.1016/j.tig.2003.08.004
  12. Lavie, L., Medstrand, P., Schempp, W., Meese, E., and Mayer, J. (2004) Human endogenous retrovirus family HERV-K(HML- 5): status, evolution, and reconstruction of an ancient betaretrovirus in the human genome. J. Virol. 78, 8788−8798 https://doi.org/10.1128/JVI.78.16.8788-8798.2004
  13. Lower, R., Lower, J., and Kurth, R. (1996) The viruses in all of us: characteristics and biological significance of human endogenous retrovirus sequences. Proc. Natl. Acad. Sci. USA 93, 5177−5184
  14. Mager, D. L. and Freeman, J. D. (1995) HERV-H endogenous retroviruses: presence in the New World branch but amplification in the Old World primate lineage. Virology 213, 395−404 https://doi.org/10.1006/viro.1995.0012
  15. Mager, D. L., Hunter, D. G., Schertzer, M., and Freeman, J. D. (1999) Endogenous retroviruses provide the primary polyadenylation signal for two new human genes (HHLA2 and HHLA3). Genomics 59, 255−263
  16. Mamedov, I. Z., Lebedev, Y. B., and Sverdlov, E. D. (2004) Unusually long target site duplications flanking some of the long terminal repeats of human endogenous retrovirus K in the human genome. J. Gen. Virol. 85, 1485−1488 https://doi.org/10.1099/vir.0.19717-0
  17. Medstrand, P. and Mager, D. L. (1998) Human-specific integrations of the HERV-K endogenous retrovirus family. J. Virol. 72, 9782−9787
  18. Mi, S., Lee, X., Li, X., Veldman, G. M., Finnerty, H., et al. (2000) Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403, 785−789
  19. Nelson, D. T., Goodchild, N. L., and Mager, D. L. (1996) Gain of Sp1 sites and loss of repressor sequences associated with a young, transcriptionally active subset of HERV-H endogenous long terminal repeats. Virology 220, 213−218 https://doi.org/10.1006/viro.1996.0303
  20. Park, E. S., Huh, J. W., and Kim, H. S. (2005) Genetic variation of KAP13.3 and 13.4 genes in primates. Korean J. Genet. 27, 253−259
  21. Schwartz, A., Chan, D. C., Brown, L. G., Alagappan, R., Pettay, D., et al. (1998) Reconstructing hominoid Y evolution: Xhomologous block, created by X-Y transposition, was distrupted by Yp inversion through LINE-LINE recombination. Hum. Mol. Genet. 7, 1−11 https://doi.org/10.1093/hmg/7.1.1
  22. Schon, U., Seifarth, W., Baust, C., Hohenadl, C., Erfle, V., et al. (2001) Cell type-specific expression and promoter activity of human endogenous retroviral long terminal repeats. Virology 279, 280−291 https://doi.org/10.1006/viro.2000.0712
  23. Sverdlov, E. D. (2000) Retroviruses and primate evolution. Bioessays 22, 161−171
  24. Thompson, J. D., Higgins, D. G., and Gibson, T. J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position- specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673−4680 https://doi.org/10.1093/nar/22.22.4673
  25. Tristem, M. (2000) Identification and characterization of novel human endogenous retrovirus families by phylogenetic screening of the human genome mapping project database. J. Virol. 74, 3715−3730
  26. Turner, G., Barbulescu, M., Su, M., Jensen-Seaman, M. I., Kidd, K. K., et al. (2001) Insertional polymorphisms of full-length endogenous retroviruses in humans. Curr. Biol. 11, 1531−1535 https://doi.org/10.1016/S0960-9822(01)00455-9
  27. Watanabe, H., Fujiyama, A., Hattori, M., Taylor, T. D., Toyoda, A., et al. (2004) DNA sequence and comparative analysis of chimpanzee chromosome 22. Nature 429, 382−328 https://doi.org/10.1038/nature02564
  28. Yi, J. M., Kim, T. H., Huh, J. W., Park, K. S., Jang, S. B., et al. (2004) Human endogenous retroviral elements belonging to the HERV-S family from human tissues, cancer cells, and primates: expression, structure, phylogeny and evolution. Gene 342, 283−292 https://doi.org/10.1016/j.gene.2004.08.007