• 제목/요약/키워드: Genomic analysis

검색결과 1,620건 처리시간 0.027초

진단의학 도구로서의 DNA칩 (DNAchip as a Tool for Clinical Diagnostics)

  • 김철민;박희경
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2004년도 춘계학술대회 학술발표 논문집 제14권 제1호
    • /
    • pp.97-100
    • /
    • 2004
  • The identification of the DNA structure as a double-stranded helix consting of two nucleotide chain molecules was a milestone in modern molecular biology. The DNA chip technology is based on reverse hybridization that follows the principle of complementary binding of double-stranded DNA. DNA chip can be described as the deposition of defined nucleic acid sequences, probes, on a solid substrate to form a regular array of elements that are available for hybridization to complementary nucleic acids, targets. DNA chips based on cDNA clons, oligonucleotides and genomic clons have been developed for gene expression studies, genetic variation analysis and genomic changes associated with disease including cancers and genetic diseases. DNA chips for gene expression profiling can be used for functional analysis in human eel Is and animal models, disease-related gene studies, assessment of gene therapy, assessment of genetically modified food, and research for drug discovery. DNA chips for genetic variation detection can be used for the detection of mutations or chromosomal abnormalities in cnacers, drug resistances in cancer cells or pathogenic microbes, histocompatibility analysis for transplantation, individual identification for forensic medicine, and detection and discrimination of pathogenic microbes. The DNA chip will be generalized as a useful tool in clinical diagnostics in near future. Lab-on-a chip and informatics will facilitate the development of a variety of DNA chips for diagnostic purpose.

  • PDF

hpvPDB: An Online Proteome Reserve for Human Papillomavirus

  • Kumar, Satish;Jena, Lingaraja;Daf, Sangeeta;Mohod, Kanchan;Goyal, Peyush;Varma, Ashok K.
    • Genomics & Informatics
    • /
    • 제11권4호
    • /
    • pp.289-291
    • /
    • 2013
  • Human papillomavirus (HPV) infection is the leading cause of cancer mortality among women worldwide. The molecular understanding of HPV proteins has significant connotation for understanding their intrusion in the host and designing novel protein vaccines and anti-viral agents, etc. Genomic, proteomic, structural, and disease-related information on HPV is available on the web; yet, with trivial annotations and more so, it is not well customized for data analysis, host-pathogen interaction, strain-disease association, drug designing, and sequence analysis, etc. We attempted to design an online reserve with comprehensive information on HPV for the end users desiring the same. The Human Papillomavirus Proteome Database (hpvPDB) domiciles proteomic and genomic information on 150 HPV strains sequenced to date. Simultaneous easy expandability and retrieval of the strain-specific data, with a provision for sequence analysis and exploration potential of predicted structures, and easy access for curation and annotation through a range of search options at one platform are a few of its important features. Affluent information in this reserve could be of help for researchers involved in structural virology, cancer research, drug discovery, and vaccine design.

Antibiotic resistance in Neisseria gonorrhoeae: broad-spectrum drug target identification using subtractive genomics

  • Umairah Natasya Mohd Omeershffudin;Suresh Kumar
    • Genomics & Informatics
    • /
    • 제21권1호
    • /
    • pp.5.1-5.13
    • /
    • 2023
  • Neisseria gonorrhoeae is a Gram-negative aerobic diplococcus bacterium that primarily causes sexually transmitted infections through direct human sexual contact. It is a major public health threat due to its impact on reproductive health, the widespread presence of antimicrobial resistance, and the lack of a vaccine. In this study, we used a bioinformatics approach and performed subtractive genomic methods to identify potential drug targets against the core proteome of N. gonorrhoeae (12 strains). In total, 12,300 protein sequences were retrieved, and paralogous proteins were removed using CD-HIT. The remaining sequences were analyzed for non-homology against the human proteome and gut microbiota, and screened for broad-spectrum analysis, druggability, and anti-target analysis. The proteins were also characterized for unique interactions between the host and pathogen through metabolic pathway analysis. Based on the subtractive genomic approach and subcellular localization, we identified one cytoplasmic protein, 2Fe-2S iron-sulfur cluster binding domain-containing protein (NGFG RS03485), as a potential drug target. This protein could be further exploited for drug development to create new medications and therapeutic agents for the treatment of N. gonorrhoeae infections.

Genomic Insights into Paucibacter aquatile DH15, a Cyanobactericidal Bacterium, and Comparative Genomics of the Genus Paucibacter

  • Ve Van Le;So-Ra Ko;Hee-Mock Oh;Chi-Yong Ahn
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권12호
    • /
    • pp.1615-1624
    • /
    • 2023
  • Microcystis blooms threaten ecosystem function and cause substantial economic losses. Microorganismbased methods, mainly using cyanobactericidal bacteria, are considered one of the most ecologically sound methods to control Microcystis blooms. This study focused on gaining genomic insights into Paucibacter aquatile DH15 that exhibited excellent cyanobactericidal effects against Microcystis. Additionally, a pan-genome analysis of the genus Paucibacter was conducted to enhance our understanding of the ecophysiological significance of this genus. Based on phylogenomic analyses, strain DH15 was classified as a member of the species Paucibacter aquatile. The genome analysis supported that strain DH15 can effectively destroy Microcystis, possibly due to the specific genes involved in the flagellar synthesis, cell wall degradation, and the production of cyanobactericidal compounds. The pan-genome analysis revealed the diversity and adaptability of the genus Paucibacter, highlighting its potential to absorb external genetic elements. Paucibacter species were anticipated to play a vital role in the ecosystem by potentially providing essential nutrients, such as vitamins B7, B12, and heme, to auxotrophic microbial groups. Overall, our findings contribute to understanding the molecular mechanisms underlying the action of cyanobactericidal bacteria against Microcystis and shed light on the ecological significance of the genus Paucibacter.

Identification of New Microsatellite DNAs in the Chromosomal DNA of the Korean Cattle (Hanwoo)

  • Kim, J.W.;Hong, J.M.;Lee, Y.S.;Chae, S.H.;Choi, C.B.;Choi, I.H.;Yeo, J.S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제17권10호
    • /
    • pp.1329-1333
    • /
    • 2004
  • To isolate the microsatellites from the chromosomal DNA of the Korean cattle (Hanwoo) and to use those for the genetic selection, four bacteriophage genomic libraries containing the chromosomal DNA of six Hanwoo steers showing the differences in meat quality and quantity were used. Screening of the genomic libraries using $^{32}P-radiolabeled 5'-({CA})_{12}-3$nucleotide as a probe, resulted in isolation of about 3,000 positive candidate bacteriophage clones that contain $(CA)_n$-type dinucleotide microsatellites. After confirming the presence of microsatellite in each positive candidate clone by Southern blot analysis, the DNA fragments that include microsatellite and flanking sequences possessing less than 2 kb in size, were subcloned into plasmid vector. Results from the analysis of microsatellite length polymorphism, using twenty-two PCR primers designed from flanking region of each microsatellite DNA, demonstrated that 208 and 210 alleles of HW-YU-MS#3 were closely related to the economic traits such as marbling score, daily gain, backfat thickness and M. longissimus dorsi area in Hanwoo. Interestingly, HW-YU-MS#3 microsatellite was localized in bovine chromosome 17 on which QTLs related to regulation of the body fat content and muscle ypertrophy locus are previously known to exist. Taken together, the results from the present study suggest the possible use of the two alleles as a DNA marker related to economic trait to select the Hanwoo in the future.

Apriona germari Larval Cuticle Protein Genes: Genomic Structure of Three Cuticle Protein Genes and cDNA Cloning of a Novel Cuticle Protein

  • Zheng Gui Zhong;Kim Bo-Yeon;Yoon Hyung-Joo;Wei Ya Dong;Xijie Guo;Jin Byung-Rae;Shon Hung-Dae
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • 제14권1호
    • /
    • pp.51-56
    • /
    • 2007
  • In a previous study, three larval cuticle protein genes were cloned from the mulberry longicorn beetle, Apriona germari (Comp. Biochem. Physiol. B 136, 803-811, 2003). In the present study, the genomic structures of these three larval cuticle protein genes (AgLCP9.2, AgLCP12.6 and AgLCP12.3) were elucidated. All three cuticle protein genes consist of one intron and two exons. Southern blot analysis of genomic DNA suggested that three cuticle protein genes are a single copy gene. In addition, a novel larval cuticle protein gene, AgLCP10.6, was cloned from A. germari in this study. The AgLCP10.6 cDNA contains an ORF of 300 nucleotides that are capable of encoding a 100-amino acid polypeptide with a predicted molecular mass of 10.6 kDa. The amino acid sequence deduced from the AgLCP10.6 cDNA contained a type-specific consensus sequence identifiable in other insect cuticle proteins and is most homologous to Drosophila melanogaster cuticle protein ACP65A (51 % protein sequence identity). Northern blot analysis revealed that AgLCP10.6 showed epidermis-specific expression.

Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits

  • Lee, Young-Sup;Jeong, Hyeonsoo;Taye, Mengistie;Kim, Hyeon Jeong;Ka, Sojeong;Ryu, Youn-Chul;Cho, Seoae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1551-1557
    • /
    • 2015
  • The missing heritability has been a major problem in the analysis of best linear unbiased prediction (BLUP). We introduced the traditional genome-wide association study (GWAS) into the BLUP to improve the heritability estimation. We analyzed eight pork quality traits of the Berkshire breeds using GWAS and BLUP. GWAS detects the putative quantitative trait loci regions given traits. The single nucleotide polymorphisms (SNPs) were obtained using GWAS results with p value <0.01. BLUP analyzed with significant SNPs was much more accurate than that with total genotyped SNPs in terms of narrow-sense heritability. It implies that genomic estimated breeding values (GEBVs) of pork quality traits can be calculated by BLUP via GWAS. The GWAS model was the linear regression using PLINK and BLUP model was the G-BLUP and SNP-GBLUP. The SNP-GBLUP uses SNP-SNP relationship matrix. The BLUP analysis using preprocessing of GWAS can be one of the possible alternatives of solving the missing heritability problem and it can provide alternative BLUP method which can find more accurate GEBVs.

Relationship Between Genome Similarity and DNA-DNA Hybridization Among Closely Related Bacteria

  • Kang, Cheol-Hee;Nam, Young-Do;Chung, Won-Hyong;Quan, Zhe-Xue;Park, Yong-Ha;Park, Soo-Je;Desmone, Racheal;Wan, Xiu-Feng;Rhee, Sung-Keun
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권6호
    • /
    • pp.945-951
    • /
    • 2007
  • DNA-DNA hybridization has been established as an important technology in bacterial species taxonomy and phylogenetic analysis. In this study, we analyzed how the efficiency with which the genomic DNA from one species hybridizes to the genomic DNA of another species (DNA-DNA hybridization) in microarray analysis relates to the similarity between two genomes. We found that the predicted DNA-DNA hybridization based on genome sequence similarity correlated well with the experimentally determined microarray hybridization. Between closely related strains, significant numbers of highly divergent genes (>55% identity) and/or the accumulation of mismatches between conserved genes lowered the DNA-DNA hybridization signal, and this reduced the hybridization signals to below 70% for even bacterial strains with over 97% 16S rRNA gene identity. In addition, our results also suggest that a DNA-DNA hybridization signal intensity of over 40% indicates that two genomes at least shared 30% conserved genes (>60% gene identity). This study may expand our knowledge of DNA-DNA hybridization based on genomic sequence similarity comparison and further provide insights for bacterial phylogeny analyses.

Duplication of intrachromosomal insertion segments $4q32{\rightarrow}q35$ confirmed by comparative genomic hybridization and fluorescent $in$ $situ$ hybridization

  • Kim, Jin-Woo;Park, Ju-Yeon;Oh, Ah-Rum;Choi, Eun-Young;Ryu, Hyun-Mee;Kang, Inn-Soo;Koong, Mi-Kyoung;Park, So-Yeon
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제38권4호
    • /
    • pp.238-241
    • /
    • 2011
  • A 35-year-old man with infertility was referred for chromosomal analysis. In routine cytogenetic analysis, the patient was seen to have additional material of unknown origin on the terminal region of the short arm of chromosome 4. To determine the origin of the unknown material, we carried out high-resolution banding, comparative genomic hybridization (CGH), and FISH. CGH showed a gain of signal on the region of $4q32{\rightarrow}q35$. FISH using whole chromosome painting and subtelomeric region probes for chromosome 4 confirmed the aberrant chromosome as an intrachromosomal insertion duplication of $4q32{\rightarrow}q35$. Duplication often leads to some phenotypic abnormalities; however, our patient showed an almost normal phenotype except for congenital dysfunction in spermatogenesis.

애기장대 gamma-Tocopherol Methyltransferase 유전자를 이용한 상추의 형질전환 (Transformation of Arabidopsis gamma-Tocopherol Methyltransferase into Lettuce (Lactuca sativa L.))

  • 김명준;백소현;유남희;윤성중
    • 식물조직배양학회지
    • /
    • 제27권6호
    • /
    • pp.435-439
    • /
    • 2000
  • 겨울 상추 품종인 청치마 상추의 자엽조직을 ${\gamma}$-TMT유전자가 도입된 A. tumefaciens LBA 4404와 공동배양한 후, 50 mg/L kanamycin, 500 mg/L carbenicillin, 0.1 mg/L NAA, 0.5mg/L BA가 첨가된 MS재분화 배지에 옮겨 약4주 배양하여 재분화된 신초를 얻었다. 재분화된 신초를 50 mg/L kanamycin, 250mg/L carbenicillin이 포함된 MS 기본 배지에 옮겨 발근된 소식물체를 얻었다. 선발된 형질전환 식물체의 genomic DNA에 대한 PCR분석과 Southern분석을 수행하여 애기장대 ${\gamma}$-TMT유전자 특이적 DNA단편이 상추의 genomic DNA내에 삽입되었음을 확인하였다. 선발된 상추 형질전환체 잎의 $\alpha$-tocopherol/${\gamma}$-tocopherol 함량 비율이 대조 식물체에 비하여 약 4배 증가하여 도입된 ${\gamma}$-TMT유전자가 안정적으로 발현함을 나타내었다.

  • PDF