• Title/Summary/Keyword: Genomic analysis

Search Result 1,628, Processing Time 0.037 seconds

Epstein-Barr Virus-infected Akata Cells Are Sensitive to Histone Deacetylase Inhibitor TSA-provoked Apoptosis

  • Kook, Sung-Ho;Son, Young-Ok;Han, Seong-Kyu;Lee, Hyung-Soon;Kim, Beom-Tae;Jang, Yong-Suk;Choi, Ki-Choon;Lee, Keun-Soo;Kim, So-Soon;Lim, Ji-Young;Jeon, Young-Mi;Kim, Jong-Ghee;Lee, Jeong-Chae
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.755-762
    • /
    • 2005
  • Epstein-Barr virus (EBV) infects more than 90% of the world's population and has a potential oncogenic nature. A histone deacetylase (HDAC) inhibitor, trichostatin A (TSA), has shown potential ability in cancer chemoprevention and treatment, but its effect on EBV-infected Akata cells has not been examined. This study investigated the effect of TSA on the proliferation and apoptosis of the cells. TSA inhibited cell growth and induced cytotoxicity in the EBV infected Akata cells. TSA treatment sensitively induced apoptosis in the cell, which was demonstrated by the increased number of positively stained cells in the TUNEL assay, the migration of many cells to the sub-$G_0/G_1$ phase in flow cytometric analysis, and the ladder formation of genomic DNA. Western blot analysis showed that caspase-dependent pathways are involved in the TSA-induced apoptosis of EBV-infected Akata cells. Overall, this study shows that EBV-infected B lymphomas are quite sensitive to TSA-provoked apoptosis.

Development of strain-specific SCAR marker for selection of Pleurotus eryngii strains adaptable to high-temperature (큰느타리버섯의 고온적응성 형질에 관련된 SCAR Marker 개발)

  • Kim, Su Cheol;Kim, Hye Soo;Park, So Yeon;Ryu, Jae-San;Cho, Soo Jeong
    • Journal of Mushroom
    • /
    • v.12 no.3
    • /
    • pp.226-231
    • /
    • 2014
  • In this study, SCAR marker that differentiates Pleurotus eryngii strains adaptable to high-temperature from control strain was developed. Genomic DNAs of 7 control strains of Pleurotus eryngii and 7 Pleurotus eryngii strains adaptable to high-temperature were analyzed by bulked segregant analysis (BSA) using randomly amplified polymorphic DNA (RAPD). Onehundred twenty RAPD primers were screened on bulked DNA samples and a unique DNA fragment with the size of 385 bp was yielded by OP-A06 primer from the Pleurotus eryngii strains adaptable to high-temperature. A sequence characterized amplified region (SCAR) marker, designated as OP-A06-1-F and OP-A06-1-R, was designed on the basis of the determined sequence. The PCR analysis with the OP-A06-1 primer showed that this SCAR marker can clearly distinguish the Pleurotus eryngii strains adaptable to high-temperature from the control strains.

Potential Importance of Proteomics in Research of Reproductive Biology (생식생물학에세 프로테오믹스의 응용)

  • Kim Ho-Seung;Yoon Yong-Dal
    • Development and Reproduction
    • /
    • v.8 no.1
    • /
    • pp.1-9
    • /
    • 2004
  • The potential importance of proteomic approaches has been clearly demonstrated in other fields of human medical research, including liver and heart disease and certain forms of cancer. However, reproductive researches have been applied to proteomics poorly. Proteomics can be defined as the systematic analysis of proteins for their identity, quantity, and function. It could increase the predictability of early drug development and identify non-invasive biomarkers of toxicity or efficacy. Proteome analysis is most commonly accomplished by the combination of two-dimensional gel electrophoresis(2DE) and MALDI-TOF(matrix-assisted laser desorption ionization-time of flight) MS(mass spectrometry) or protein chip array and SELDI-TOF(surface-enhanced laser desorption ionization-time of flight) MS. In addition understanding the possessing knowledge of the developing biomarkers used to assess reproductive biology will also be essential components relevant to the topic of reproduction. The continued integration of proteomic and genomic data will have a fundamental impact on our understanding of the normal functioning of cells and organisms and will give insights into complex cellular processes and disease and provides new opportunities for the development of diagnostics and therapeutics. The challenge to researchers in the field of reproduction is to harness this new technology as well as others that are available to a greater extent than at present as they have considerable potential to greatly improve our understanding of the molecular aspects of reproduction both in health and disease.

  • PDF

Isolation and Characterization of an Agar-hydrolyzing Marine Bacterium, Pseudoalteromonas sp. H9, from the Coastal Seawater of the West Sea, South Korea (서해안 해수로부터 분리한 한천분해 해양미생물 Pseudoalteromonas sp. H9의 동정 및 특성 연구)

  • Chi, Won-Jae;Youn, Young Sang;Kim, Jong-Hee;Hong, Soon-Kwang
    • Microbiology and Biotechnology Letters
    • /
    • v.43 no.2
    • /
    • pp.134-141
    • /
    • 2015
  • An agarolytic marine bacterium (H9) was isolated from the coastal seawater of the West Sea, South Korea. The isolate, H9, was gram-negative and rod-shaped with a smooth surface and polar flagellum. Cells grew at 20-30℃, between pH 5.0 and 9.0, and in ASW-YP (Artificial Sea Water-Yeast extract, Peptone) media containing 1-5% (w/v) NaCl. The G+C content was 41.56 mol%. The predominant isoprenoid quinone in strain H9 was ubiquinone-8. The major fatty acids (>10%) were C16:1ω7c (34.3%), C16:0 (23.72%), and C18:1ω7c (13.64%). Based on 16S rRNA gene sequencing, and biochemical and chemotaxonomic characterization, the strain was designated as Pseudoalteromonas sp. H9 (=KCTC23887). In liquid culture supplemented with 0.2% agar, the cell density and agarase activity reached a maximum level of OD = 4.32 (48 h) and OD = 3.87 (24 h), respectively. The optimum pH and temperature for the extracellular crude agarases of H9 were 7.0 and 40℃, respectively. Thin-layer chromatography analysis of the agarase hydrolysis products revealed that the crude agarases hydrolyze agarose into neoagarotetraose and neoagarohexaose. Therefore, the new agar-degrading strain, H9, can be applicable for the production of valuable neoagarooligosaccharides and for the complete degradation of agar in bio-industries.

Identification and Biochemical Characterization of a New Xylan-degrading Streptomyces atrovirens Subspecies WJ-2 Isolated from Soil of Jeju Island in Korea (제주도 토양으로부터 자일란 분해 Streptomyces atrovirens subspecies WJ-2 동정 및 효소의 생화학적 특성 규명)

  • Kim, Da Som;Bae, Chang Hwan;Yeo, Joo Hong;Chi, Won-Jae
    • Microbiology and Biotechnology Letters
    • /
    • v.44 no.4
    • /
    • pp.512-521
    • /
    • 2016
  • A bacterial strain was isolated from a soil sample collected on Jeju Island, Korea. The strain, designated WJ-2, exhibited a high xylanase activity, whereas cellulase activity was not detected. The 16S rRNA gene sequence of WJ-2 was highly similar to type strains of the genus Streptomyces. A neighbor-joining phylogenetic tree based on 16S rRNA gene sequences showed that strain WJ-2 is phylogenetically related to Streptomyces atrovirens. Furthermore, DNA-DNA hybridization analysis confirmed that strain WJ-2 is a novel subspecies of Streptomyces atrovirens. The genomic DNA G+C content was 73.98 mol% and the major fatty acid present was anteiso-C15:0 (36.19%). The growth and xylanase production of strain WJ-2 were significantly enhanced by using soytone and xylan as nitrogen and carbon sources, respectively. Crude enzyme preparations from the culture broth of strain WJ-2 exhibited maximal total xylanase activities at pH 7.0 and $55^{\circ}C$. Thin-layer chromatography analysis revealed that the crude enzyme degrades beechwood xylan to yield xylobiose and xylotriose as the principal hydrolyzed end products.

Immunological Detection of Garlic Latent Virus (마늘 잠복 바이러스의 면역학적 진단)

  • Choi, Jin-Nam;Song, Jong-Tae;Song, Sang-Ik;Ahn, Ji-Hoon;Choi, Yang-Do;Lee, Jong-Seob
    • Applied Biological Chemistry
    • /
    • v.38 no.1
    • /
    • pp.49-54
    • /
    • 1995
  • To understand the molecular structure and pathogenesis mechanism of Korean garlic viruses, we have isolated cDNA clones for garlic viruses. The partial nucleotide sequences of 24 cDNA clones were determined and those of five clones containing poly(A) tail were compared with sequences of other plant viruses. One of these clones, V9, has a primary structure similar to the carlavirus group, suggesting that the clone V9 derived from a part of garlic latent virus (GLV). Northern blot analysis with the clone V9 as a probe demonstrated that GLV genome is 8.5 knt long and has a poly(A) tail. The clone V9 encodes coat protein (CP) of 33 kDa and nucleic acid binding protein of 10 kDa in different reading frame. The hexanucleotide motif, 5'-ACCUAA, which is conserved in the 3' noncoding region arid was proposed to be a cis-acting element involved in the production of negative strand genomic RNA was noticed. Complementary sequence to the hexanucleotide motif, 5'-TTAGGT, is also found in the positive strand of V9 RNA. The putative CP gene was cloned into the pRSET-A expression vector and expressed in E. coli BL21. The expressed recombinant V9CP protein was purified by $Ni^{2+}$ NTA affinity chromatography. The anti-V9CP antibody recognizes 34 kDa polypeptide which could be CP of GLV in infected garlic leaf extract. Immunoblot and Northern blot analysis of various cultivars shows wide occurrence of GLV in Korean garlic plants.

  • PDF

Intrapecific Relationship of Rehmannia glutinosa Lines Collected from Korea, Japan and China by RAPD Analysis (RAPD 방법을 이용한 국내외 수집 지황(地黃)의 유연 관계 분석)

  • Kim, Jong-Yeob;Choi, Sun-Young;Choo, Beng-Gil;Ryu, Jeom-Ho;Kwon, Tae-Ho;Oh, Dong-Hun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.8 no.3
    • /
    • pp.266-273
    • /
    • 2000
  • The optimal conditions of PCR components for the random amplification of genomic DNA were $20\;ng/20{\mu}l$ in template DNAs, 250 mM in dNTP, 10 pM in primer $1.0unit/20{\mu}l$ in Taq DNA polymerase respectively with the annealing temperature at $36^{\circ}C$, respectively. Twelve local lines were divided into 3 groups by the coefficients of 107 polymophic bands by Jaccard and Nei. The coefficients value of group I including Chongup # 1, Seochon # 1, Andong # 1, Chinan # 1, and Danyang # 1 ranged from 0.27 to 0.05 and those of group II including Suwon # 2, Chunchon # 1, Japan # 3, Danyang#2 and $F_1$ (Variety Jihwang $1{\times}$ Seohchon) ranged from 0.29 to 0.11. While, Jihwang 1 originated from China and Japan # 1 in group III showed a distant genetic relationship to Korean local lines.

  • PDF

Optimized Internal Control and Gene Expression Analysis in Epstein-Barr Virus-Transformed Lymphoblastoid Cell Lines

  • Nam, Hye-Young;Kim, Hye-Ryun;Shim, Sung-Mi;Lee, Jae-Eun;Kim, Jun-Woo;Park, Hye-Kyung;Han, Bok-Ghee;Jeon, Jae-Pil
    • Genomics & Informatics
    • /
    • v.9 no.3
    • /
    • pp.127-133
    • /
    • 2011
  • The Epstein-Barr virus-transformed lymphoblastoid cell line (LCL) is one of the major genomic resources for human genetics and immunological studies. Use of LCLs is currently extended to pharmacogenetic studies to investigate variations in human gene expression as well as drug responses between individuals. We evaluated four common internal controls for gene expression analysis of selected hematopoietic transcriptional regulatory genes between B cells and LCLs. In this study, the expression pattern analyses showed that TBP (TATA box-binding protein) is a suitable internal control for normalization, whereas GAPDH (glyceraldehyde-3-phosphate dehydrogenase) is not a good internal control for gene expression analyses of hematopoiesis-related genes between B cells and LCLs at different subculture passages. Using the TBP normalizer, we found significant gene expression changes in selected hematopoietic transcriptional regulatory genes (downregulation of RUNX1, RUNX3, CBFB, TLE1, and NOTCH2 ; upregulation of MSC and PLAGL2) between B cells and LCLs at different passage numbers. These results suggest that these hematopoietic transcriptional regulatory genes are potential cellular targets of EBV infection, contributing to EBV-mediated B-cell transformation and LCL immortalization.

Molecular Detection of Korean-type Bovine Immunodeficiency Virus by Polymerase Chain Reaction (DNA 중합효소 연쇄반응을 이용한 한국형 젖소 면역 결핍 바이러스의 검출)

  • 권오식
    • Biomedical Science Letters
    • /
    • v.5 no.1
    • /
    • pp.101-107
    • /
    • 1999
  • Bovine immunodeficiency virus (BIV) which was grouped into the Lentivirinae of family Retroviridae, was known to be causing many immunodeficiency syndromes among cows. The BIV was studied worldwide during last several years for its importance in cattle industries but nothing was reported in Korea until now Thus we initially tried to study the existence of BIV in cattle around the Daegu·Kyungpook area by PCR related molecular techniques. As a prerequisite investigation for detecting Korean-type BIV, we had focused our aim into BLV infected cows because the BLV infected cows tend to show BIV infection with 5% ranges. Hence we randomly sampled fresh bloods from 248 cows and bulls near the Daegu·Kyungpook area and collected peripheral blood monocytes (PBMC) from the sample bloods. After extracting genomic DNA from the PBMC, we subjected it to PCR and Soluthern blot analysis for BIV/BLV detection. Overall, 66.9% (81/121) of the cow PBMC samples turned out to be BLV positive by PCR and the result was reconfirmed by Southern blot analysis. The value was two times higher than the previously reported results of BLV infection in Korea. The significant difference was mainly due to 1) applying highly specific methods for BLV detection such as PCR 2) that BLV was continuously spreaded in the Daegu Kyungpook area without any notice during last ten years. We also tested the BLV positive samples with the same techniques for BIV detection. And we found some BIV positives among the lot 3C samples by PCR, which had showed 100% BLV positive.

  • PDF

Identification and Molecular Characterization of Methionine Sulfoxide Reductase B Gene in Rice Blast Fungus, Magnaporthe oryzae (벼도열병균에서의 methionine sulfoxide reductase B 유전자의 분자적 특성)

  • Kim, Jeong-Hwan;Kim, Jin-Soo;Jeong, Mi-Yeon;Choi, Woo-Bong
    • Journal of Life Science
    • /
    • v.19 no.3
    • /
    • pp.343-348
    • /
    • 2009
  • Magnaporthe oryzae, a major cause of rice blast, is one of the most destructive plant fungal pathogens. Secretion of reactive oxygen species (ROS) during the infection phase of plant pathogenic fungus plays a key role in the defense mechanism of a plant. ROS causes oxidative damage and functional modification to the proteins in a pathogenic fungus. Methionine, especially, is a major target of ROS, which oxidizes it to methionine sulfoxide. To survive from the attack of ROS, plant pathogenic fungus has antioxidative systems - one example would be methionine sulfoxide reductase B (MSRB), which reverses the oxidative alteration of methionine to methionine sulfoxide. In the present study, identification and molecular characterization of the MSRB gene in M. oryzae KJ201 were investigated. The MSRB gene was amplified by PCR from the M. oryzae KJ201 genomic DNA. The copy number of MSRB in the genome of M. oryzae KJ201 was identified by Southern blot analysis, which revealed that the gene exists as a single copy. To study the molecular function of an MSRB gene, the expression level of the MSRB gene was assayed with hydrogen peroxide treatment by Northern blot analysis and RT-PCR. The expression of the MSRB gene was increased by treatment of hydrogen peroxide, without significant correlation to hydrogen peroxide concentrations. These results indicate that the MSRB gene in M. oryzae KJ201 could contribute to protection against plant defense compounds such as ROS and offer a novel strategy for the control of rice blast.