• Title/Summary/Keyword: Genomic Sequence

Search Result 899, Processing Time 0.027 seconds

Novosphingobium ginsenosidimutans sp. nov., with the Ability to Convert Ginsenoside

  • Kim, Jin-Kwang;He, Dan;Liu, Qing-Mei;Park, Hye-Yoon;Jung, Mi-Sun;Yoon, Min-Ho;Kim, Sun-Chang;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.4
    • /
    • pp.444-450
    • /
    • 2013
  • A Gram-negative, strictly aerobic, non-motile, non-spore-forming, and rod-shaped bacterial strain designated FW-$6^T$ was isolated from a freshwater sample and its taxonomic position was investigated by using a polyphasic approach. Strain FW-$6^T$ grew optimally at $10-42^{\circ}C$ and at pH 7.0 on nutrient and R2A agar. Strain FW-$6^T$ displayed ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to Rd. On the basis of 16S rRNA gene sequence similarity, strain FW-$6^T$ was shown to belong to the family Sphingomonadaceae and was related to Novosphingobium aromaticivorans DSM $12444^T$ (98.1% sequence similarity) and N. subterraneum IFO $16086^T$ (98.0%). The G+C content of the genomic DNA was 64.4%. The major menaquinone was Q-10 and the major fatty acids were summed feature 7 (comprising $C_{18:1}{\omega}9c/{\omega}12t/{\omega}7c$), summed feature 4 (comprising $C_{16:1}{\omega}7c/iso-C_{15:0}2OH$), $C_{16:0}$, and $C_{14:0}$ 2OH. DNA and chemotaxonomic data supported the affiliation of strain FW-$6^T$ to the genus Novosphingobium. Strain FW-$6^T$ could be differentiated genotypically and phenotypically from the recognized species of the genus Novosphingobium. The isolate that has ginsenoside converting ability therefore represents a novel species, for which the name Novosphingobium ginsenosidimutans sp. nov. is proposed, with the type strain FW-$6^T$ (= KACC $16615^T$ = JCM $18202^T$).

Cloning and Expression of Thermostable $\beta$-Glycosidase Gene from Thermus filiformis Wai33 A1 in Escherichia coli and Enzyme Characterization

  • Kang, Sang-Kee;Cho, Kwang-Keun;Ahn, Jong-Kun;Kang, Seung-Ha;Han, Kyung-Ho;Lee, Hong-Gu;Choi, Yun-Jaie
    • Journal of Microbiology and Biotechnology
    • /
    • v.14 no.3
    • /
    • pp.584-592
    • /
    • 2004
  • A thermostable $\beta$-glycosidase gene, tfi $\beta$-gly, was cloned from the genomic library of Thermus filiformis Wai33 A1. ifi $\beta$-gly consists of 1,296 bp nucleotide sequence and encodes a polypeptide of 431 amino acids. It shares a strong amino acid sequence similarity with the $\beta$-glycosidases from other Thermus spp. belonging to the glycosyl hydrolase family 1. In the present study, the enzyme was overexpressed in Escherichia coli BL21 (DE3) using the pET21b(+) vector system. The recombinant enzyme was purified to homogeneity by heat treatment and a $Ni^{2+}$-affinity chromatography. Polyacrylamide gel electrophoresis (PAGE) showed that the recombinant Tfi $\beta$-glycosidase was a monomeric form with molecular mass of 49 kDa. The temperature and pH range for optimal activity of the purified enzyme were 80- $90^{\circ}C$ and 5.0-6.0, respectively. Ninety-three percent of the enzyme activity was remained at $70^{\circ}C$ after 12 h, and its half-life at $80^{\circ}C$ was 6 h, indicating that Tfi $\beta$-glycosidase is highly thermostable. Based on its K_m$, or $K_{cat}K_m$, ratio, Tfi $\beta$-glycosidase appeared to have higher affinity for $\beta$-D-glucoside than for $\beta$-D-galactoside, however, $K_{cat} for \beta$-D-galactoside was much higher than that for $\beta$-D-glucoside. The activity for lactose hydrolysis was proportionally increased at $70^{\circ}C$ and pH 7.0 without substrate inhibition until reaching 250 mM lactose concentration. The specific activity of Tfi TEX>$\beta$-glycosidase on 138 mM lactose at $70{^\circ}C$ and pH 7.0 was 134.9 U/mg. Consequently, this newly cloned enzyme appears to have a valuable advantage of conducting biotechnological processes at elevated temperature during milk pasteurization in the production of low-lactose milk.

Bacillus ginsengihumi sp. nov., a Novel Species Isolated from Soil of a Ginseng Field in Pocheon Province, South Korea

  • Ten Leonid N.;Im Wan-Taek;Baek Sang-Hoon;Lee, Jung-Sook;Oh, Hee-Mock;Lee, Sung-Taik
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1554-1560
    • /
    • 2006
  • A Gram-positive, aerobic or facultative anaerobic, non motile, endospore-forming bacterial strain, designated Gsoil $114^T$, was isolated from a soil sample of a ginseng field in Pocheon Province (South Korea), and was characterized taxonomically by using a polyphasic approach. It grew well on nutrient agar medium and utilized a limited number of organic substrates as sole carbon sources, including D-xylose and some other carbohydrates, but did not utilize L-amino acids and organic acids. The isolate was positive for oxidase test but negative for catalase, and negative for degradation of macromolecules such as starch, cellulose, xylan, casein, chitin, and DNA. The G+C content of the genomic DNA was 41.8 mol%. The predominant isoprenoid quinone was menaquinone 7 (MK-7). The major fatty acids were $anteiso-C_{15:0}$ (32.1%), $iso-C_{15:0}$ (30.5%), and $anteiso-C_{17:0}$ (30.2%). Comparative 16S rRNA gene sequence analysis showed that strain Gsoil $114^T$ fell within the radiation of the cluster comprising Bacillus species and joined Bacillus shackletonii LMG $18435^T$ with a bootstrap value of 95%. The highest 16S rRNA gene sequence similarities were found with Bacillus shackletonii LMG $18435^T$ (97.6%), Bacillus acidicola DSM $14745^T$ (96.9%), Bacillus sporothermodurans DSM $10599^T$ (96.5%), and Bacillus oleronius DSM $9356^T$ (96.5%). The phylogenetic distance from any other validly described species within the genus Bacillus was less than 96%. DNA-DNA hybridization experiments showed that the DNA-similarities between strain Gsoil $114^T$ and closest phylogenetic neighbors were less than 39%. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil $114^T$ (=KCTC $13944^T$=DSMZ $18134^T$) was classified in the genus Bacillus as the type strain of a novel species, for which the name Bacillus ginsengihumi sp. nov. is proposed.

Developing a Gene-trapping Approach for Gene Identification Using Nuclear Transfer in Zebrafish (지브라물고기 복제방법에 의한 유전자 동정 및 유전자트랩법 개발)

  • Lee, K.Y.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.155-164
    • /
    • 2004
  • This involves identifying and cloning trapped genes from cultured cells carrying the gene-trap constructs and generating cloned zebrafish using these cells for functional study. Gene-trapping studies in gene-trapped cells were carried out in initial and cloned zebrafish carrying gene-trap events were successfully produced based on the nuclear transplantation technique. Two kind of retroviral gene-trap constructs were adopted. The first one(SA/GFP-TP), constructed in my laboratory, carries a GFP reporter gene containing a splicing acceptor and an internal neo gene. The second one(Neo-TP), obtained from Dr. Hicks (Hicks et al., 1997), contains a promoter-less neo gene located in the LTR sequence of a retroviral vector. The infected cells were subjected to drug selection(neomycin treatment) because the two constructs carry the neomycin resistant gene. All those cells survived the neomycin treatment should carry the proviral insertions. For Neo-TP, Isolated DNA from the neomycin-resistant fibroblast cells infected by Neo-TP, was digested with EcoR1 restriction enzyme and transformed into bacteria after ligation. This procedure led to the isolation of seven clones carrying flanking cellular DNA with a typical retroviral integration signature sequence. These clones contained genomic DNA ranging from 1kb to 7kb and sequences of 300-600 bp were obtained from each of the rescued plasmids. Database searching showed that all of them share high homology to zebrafish sequences. For fish cloning using tagged cells, initially, nucleus donors directly selected from a mixture of cells(Neo-TP cells) were used. A total of 44 embryos(3.7%) out of 1179 transplants were reached blastula stage; 8 of these embryos(0.8%) hatched and 3(0.3%) of them survived to adulthood. One out of three lived cloned zebrafish has an amplified fragment and was labeled with 32P.

Association of polymorphisms in bone morphogenetic protein receptor-1B gene exon-9 with litter size in Dorset, Mongolian, and Small Tail Han ewes

  • Jia, Jianlei;Chen, Qian;Gui, Linsheng;Jin, Jipeng;Li, Yongyuan;Ru, Qiaohong;Hou, Shengzhen
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.949-955
    • /
    • 2019
  • Objective: The present study was to investigate the association of polymorphisms in exon-9 of the bone morphogenetic protein receptor-1B (BMPR-1B) gene (C864T) with litter size in 240 Dorset, 232 Mongolian, and 124 Small Tail Han ewes. Methods: Blood samples were collected from 596 ewes and genomic DNA was extracted using the phenol: chloroform extraction method. The 304-bp amplified polymerase chain reaction product was analyzed for polymorphism by single-strand conformation polymorphism method. The genotypic frequency and allele frequency of BMPR-1B gene exon-9 were computed after sequence alignment. The ${\chi}^2$ independence test was used to analyze the association of genotypic frequency and litter size traits with in each ewe breed, where the phenotype was directly treated as category. Results: The results indicated two different banding patterns AA and AB for this fragment, with the most frequent genotype and allele of AA and A. Calculated Chi-square test for BMPR-1B gene exon-9 was found to be more than that of p value at the 5% level of significance, indicating that the population under study was in Hardy-Weinberg equilibrium for all ewes. The ${\chi}^2$ independence test analyses indicated litter size differences between genotypes was not the same for each breed. The 304-bp nucleotide sequence was subjected to BLAST analysis, and the C864T mutation significantly affected litter size in singletons, twins and multiples. The heterozygosity in exon-9 of BMPR-1B gene could increase litter size for all the studied ewes. Conclusion: Consequently, it appears that the polymorphism BMPR-1B gene exon-9 detected in this study may have potential use in marker assisted selection for litter size in Dorset, Mongolian, and Small Tail Han ewes.

Molecular authentication of Lepidii seu Descurainiae Semen by the development of matK amplification primers and analysis of sequences (matK 증폭용 primer 개발 및 염기서열 분석을 통한 정력자(葶藶子) 유전자 감별)

  • Moon, Byeong Cheol;Kim, Wook Jin;Yang, Sungyu;Park, Inkyu;Yeo, Sang Min;Noh, Pureum
    • The Korea Journal of Herbology
    • /
    • v.33 no.3
    • /
    • pp.25-35
    • /
    • 2018
  • Objectives : Lepidii seu Descurainiae Semen has been frequently adulterated with the seeds of several inauthentic plant species. However, the accurate identification of these plant seeds is very difficult. To develop a reliable genetic authentication tool for Lepidii seu Descurainiae Semen, we analyzed matK sequence. Methods : To obtain the matK sequences of plant materials, genomic DNA was extracted from 24 samples and PCR amplification was carried out using matK-AF/matK-8R universal primer set and matK-LDSF/matK-LDSR primer set. For identifying species-specific nucleotides and phylogenetic analysis, matK regions were sequenced and comparatively analyzed by the ClustalW and Maximum Likelihood method. Results : We developed a new primer set to amplify matK region in Lepidii seu Descurainiae Semen and closely related plant samples. From the comparative analysis of matK sequences, we identified species-specific marker nucleotides for D. sophia, L. apetalum, L. latifolium, E. cheiranthoides, E. macilentum, and D. nemorosa, respectively. Furthermore, phylogenetic analysis revealed clear classification depending on the species. These results indicated that the matK sequence obtained a new primer set in this study was useful to identify Lepidii seu Descurainiae Semen in species level. Conclusions : We developed a primer set and identified species-specific marker nucleotides enough to distinguish authentic Lepidii seu Descurainiae Semen and adulterants at the species level based on the matK sequences. These genetic tool will be useful to prevent adulteration and to standardize the quality of Lepidii seu Descurainiae Semen.

Characterization of broad bean wilt virus 2 isolated from Perilla frutescens in Korea (국내 잎들깨에서 발생한 잠두위조바이러스2의 특성 구명)

  • Hyun-Sun Kim;Hee-Seong Byun;You-Ji Choi;Hyun-Yong Choi;Jang-Kyun Seo;Hong-Soo Choi;Bong-Choon Lee;Mikyeong Kim;Hae-Ryun Kwak
    • Korean Journal of Environmental Biology
    • /
    • v.41 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Broad bean wilt virus 2 (BBWV2) is a species in the genus Fabavirus and family Secoviridae, which is transmitted by aphids and has a wide host range. The BBWV2 genome is composed of two single-stranded, positive-sense RNAs, RNA-1 and RNA-2. The representative symptoms of BBWV2 are mosaic, mottle, vein clearing, wilt, and stunting on leaves, and these symptoms cause economic damage to various crops. In 2019, Perilla fructescens leaves with mosaic and yellowing symptoms were found in Geumsan, South Korea. Reverse-transcription polymerase chain reaction (RT-PCR) was performed with specific primers for 10 reported viruses, including BBWV2, to identify the causal virus, and the results were positive for BBWV2. To characterize a BBWV2 isolate (BBWV2-GS-PF) from symptomatic P. fructescens, genetic analysis and pathogenicity tests were performed. The complete genomic sequences of RNA-1 and RNA-2 of BBWV2-GS-PF were phylogenetically distant to the previously reported BBWV2 isolates, with relatively low nucleotide sequence similarities of 76-80%. In the pathogenicity test, unlike most BBWV2 isolates with mild mosaic or mosaic symptoms in peppers, the BBWV2-GS-PF isolate showed typical ring spot symptoms. Considering these results, the BBWV2-GS-PF isolate from P. fructescens could be classified as a new strain of BBWV2.

Recent Advancement in the Differentiation of Tissues and Organs and Regulation of Gene Expression (조직.기관의 분화와 유전자 발현의 조절, 최근의 진보)

  • Harn, Chang-Yawl
    • Korean Journal of Plant Tissue Culture
    • /
    • v.24 no.1
    • /
    • pp.1-35
    • /
    • 1997
  • Fertilized egg, by successive cell divisions, differentiates into different tissues and organs with various structures and functions. Different cells and tissues contain different proteins, products of selective gene expression. Not all the genes in any genomes are equally active, temporal and spatial gene expression being the general rule. Present paper attempts to review the tanscriptional mechanisms or the initiations of transcription from several angles. In some of the organisms the genes in the process of transcription or the genes in the inactive state can be seen under the light microscope. Some bands of Drosophila polytene chromosomes may exhibit a swollen or puff appearance under certain conditions. A puff, unfolded or decondensed form of chromomere, represents sets of intense transcriptional activity or RNA synthesis. The heterochromatic X chromosome whose genes remain inactive in the female mammals can be visualized as a dark staining structure called Barr body, Configuration of chromatin differs between transcribed and nontranscribed chromatin. Modification to the chromatin facilitates RNA synthesis. The movement of large polymerase molecule along the DNA would probably be facilitated if some modifications of the chromatin configuration is effected. Methylation of cytosines in CG sequences is associated with inactive genes. Methylation can play a role in determination of mammalian cells during embryogenesis. Demethylation is necessary for the gene to be expressed during development A histone modification that is also known to be correlated with transcriptional capacity of chromatin is acetylation of the lysine residues of the core histones. Chromatin containing a high level of histone acetylation is very sensitive to DNase 1. For the transcription to occur TBP must first bind to the TATA box. Another TF, TF IIB, then binds to the promoter-TBP complex, facilitating the access of RNA polymerase to the transcription initiation site. As recently as eight years ago researchers assumed that histones were irrelevant to the regulation of gene expression. Histones combine with the DNA to form nucleosome of the chromatin. Histones are vital participant in gene regulation. Histone and basal factors compete for access to TATA box. When DNA is exposed to basal factors before histones are introduced, the basal factors assemble on TATA boxes preventing the access of histones, allowing transcription to occur, for transcription to begin, activator protein at the upstream activation sequence or enhancer must interact with the tail of histone H4 at TATA box and cause the histone role particle to dissociate from the TATA box leading to partial breakup of the histone core particle and allowing the basal factors to bind to the TATA box. New concept of genomic flux in contrast to the old concept of static genome has been developed based on the powerful new molecular techniques. Genomic changes such as repetitive DNAs and transposable elements, it is assumed but not yet proved, may affect some of the developmental patterns that characterize particular cells, tissues, organs, and organisms. In the last decade or so remarkable achievement have been made in the researches of the structures and functions of TFs and the specific target sequences located in promoters or enhancers where these TFs bind. TFs have independent domains that bind DNA and that activate transcription. DNA binding domain of TFs serves to bring the protein into the right location. There are many types of DNA binding domains. Common types of motifs can be found that are responsible for binding to DNA. The motifs are usually quite short and comprise only a small part of the protein structure. Steroid receptors have domains for hormone binding, DNA binding, and activating transcription. The zinc finger motif comprises a DNA binding domain. Leucine zipper consist of a stretch of amino acids with a leucine residue in every seventh position Two proteins form a dimer because they interact by means of leucine zippers on similar α-helical domain. This positions their DNA binding basic domains for interaction with the two halves of a DNA sequence with dyad symmetry of TGACTCA, ACTGAGT.

  • PDF

Construction of Web-Based Database for Anisakis Research (고래회충 연구를 위한 웹기반 데이터베이스 구축)

  • Lee, Yong-Seok;Baek, Moon-Ki;Jo, Yong-Hun;Kang, Se-Won;Lee, Jae-Bong;Han, Yeon-Soo;Cha, Hee-Jae;Yu, Hak-Sun;Ock, Mee-Sun
    • Journal of Life Science
    • /
    • v.20 no.3
    • /
    • pp.411-415
    • /
    • 2010
  • Anisakis simplex is one of the parasitic nematodes, and has a complex life cycle in crustaceans, fish, squid or whale. When people eat under-processed or raw fish, it causes anisakidosis and also plays a critical role in inducing serious allergic reactions in humans. However, no web-based database on A. simplex at the level of DNA or protein has been so far reported. In this context, we constructed a web-based database for Anisakis research. To build up the web-based database for Anisakis research, we proceeded with the following measures: First, sequences of order Ascaridida were downloaded and translated into the multifasta format which was stored as database for stand-alone BLAST. Second, all of the nucleotide and EST sequences were clustered and assembled. And EST sequences were translated into amino acid sequences for Nuclear Localization Signal prediction. In addition, we added the vector, E. coli, and repeat sequences into the database to confirm a potential contamination. The web-based database gave us several advantages. Only data that agrees with the nucleotide sequences directly related with the order Ascaridida can be found and retrieved when searching BLAST. It is also very convenient to confirm contamination when making the cDNA or genomic library from Anisakis. Furthermore, BLAST results on the Anisakis sequence information can be quickly accessed. Taken together, the Web-based database on A. simplex will be valuable in developing species specific PCR markers and in studying SNP in A. simplex-related researches in the future.

Development of prevotella intermedia ATCC 49046 Strain-Specific PCR Primer Based on a Pig6 DNA Probe (Pig6 DNA probe를 기반으로 하는 Prevotella intermedia ATCC 49046 균주-특이 PCR primer 개발)

  • Jeong Seung-U;Yoo So-Young;Kang Sook-Jin;Kim Mi-Kwang;Jang Hyun-Seon;Lee Kwang-Yong;Kim Byung-Ok;Kook Joong-Ki
    • Korean Journal of Microbiology
    • /
    • v.42 no.2
    • /
    • pp.89-94
    • /
    • 2006
  • The purpose of this study is to develop the strain-specific PCR primers for the identification of prevotella inter-media ATCC 49046 which is frequently used in the pathogenesis studies of periodontitis. The Hind III-digested genomic DNA of P. intermedia ATCC 49046 were cloned by random cloning method. The specificity of cloned DNA fragments were determined by Southern blot analysis. The nucleotide sequence of cloned DNA probes was determined by chain termination method. The PCR primers were designed based on the nucleotide sequence of cloned DNA fragment. The data showed that Pig6 DNA probe were hybridized with the genomic DNA from P. intermedia strains (ATCC $25611^T$ and 49046) isolated from the Westerns, not the strains isolated from Koreans. The Pig6 DNA probe were consisted of 813 bp. Pig6-F3 and Pig6-R3 primers, designed base on the nucleotide Sequences Of Pig6 DNA Probe, were 3150 specific to the only both P. intermedia ATCC $25611^T$ and P. intermedia ATCC 49046. In the other hand, Pig6-60F and Pig6-770R primers were specific to the only P. intermedia ATCC 49046. The two PCR primer sets could detect as little as 4 pg of chromosomal DNA of P. intermedia. These results indicate that Pig6-60F and Pig6-770R primers have proven useful for the identification of P. intermedia ATCC 49046, especially with regard to the maintenance of the strain.