• 제목/요약/키워드: Genomic Estimated Breeding Values [GEBV]

검색결과 7건 처리시간 0.018초

Comparison on genomic prediction using pedigree BLUP and single step GBLUP through the Hanwoo full-sib family

  • Eun-Ho Kim;Ho-Chan Kang;Cheol-Hyun Myung;Ji-Yeong Kim;Du-Won Sun;Doo-Ho Lee;Seung-Hwan Lee;Hyun-Tae Lim
    • Animal Bioscience
    • /
    • 제36권9호
    • /
    • pp.1327-1335
    • /
    • 2023
  • Objective: When evaluating individuals with the same parent and no phenotype by pedigree best linear unbiased prediction (BLUP), it is difficult to explain carcass grade difference and select individuals because they have the same value in pedigree BLUP (PBLUP). However, single step GBLUP (ssGBLUP), which can estimate the breeding value suitable for the individual by adding genotype, is more accurate than the existing method. Methods: The breeding value and accuracy were estimated with pedigree BLUP and ssGBLUP using pedigree and genotype of 408 Hanwoo cattle from 16 families with the same parent among siblings produced by fertilized egg transplantation. A total of 14,225 Hanwoo cattle with pedigree, genotype and phenotype were used as the reference population. PBLUP obtained estimated breeding value (EBV) using the pedigree of the test and reference populations, and ssGBLUP obtained genomic EBV (GEBV) after constructing and H-matrix by integrating the pedigree and genotype of the test and reference populations. Results: For all traits, the accuracy of GEBV using ssGBLUP is 0.18 to 0.20 higher than the accuracy of EBV obtained with PBLUP. Comparison of EBV and GEBV of individuals without phenotype, since the value of EBV is estimated based on expected values of alleles passed down from common ancestors. It does not take Mendelian sampling into consideration, so the EBV of all individuals within the same family is estimated to be the same value. However, GEBV makes estimating true kinship coefficient based on different genotypes of individuals possible, so GEBV that corresponds to each individual is estimated rather than a uniform GEBV for each individual. Conclusion: Since Hanwoo cows bred through embryo transfer have a high possibility of having the same parent, if ssGBLUP after adding genotype is used, estimating true kinship coefficient corresponding to each individual becomes possible, allowing for more accurate estimation of breeding value.

Evaluation of Genome Based Estimated Breeding Values for Meat Quality in a Berkshire Population Using High Density Single Nucleotide Polymorphism Chips

  • Baby, S.;Hyeong, K.E.;Lee, Y.M.;Jung, J.H.;Oh, D.Y.;Nam, K.C.;Kim, T.H.;Lee, H.K.;Kim, Jong-Joo
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제27권11호
    • /
    • pp.1540-1547
    • /
    • 2014
  • The accuracy of genomic estimated breeding values (GEBV) was evaluated for sixteen meat quality traits in a Berkshire population (n = 1,191) that was collected from Dasan breeding farm, Namwon, Korea. The animals were genotyped with the Illumina porcine 62 K single nucleotide polymorphism (SNP) bead chips, in which a set of 36,605 SNPs were available after quality control tests. Two methods were applied to evaluate GEBV accuracies, i.e. genome based linear unbiased prediction method (GBLUP) and Bayes B, using ASREML 3.0 and Gensel 4.0 software, respectively. The traits composed different sets of training (both genotypes and phenotypes) and testing (genotypes only) data. Under the GBLUP model, the GEBV accuracies for the training data ranged from $0.42{\pm}0.08$ for collagen to $0.75{\pm}0.02$ for water holding capacity with an average of $0.65{\pm}0.04$ across all the traits. Under the Bayes B model, the GEBV accuracy ranged from $0.10{\pm}0.14$ for National Pork Producers Council (NPCC) marbling score to $0.76{\pm}0.04$ for drip loss, with an average of $0.49{\pm}0.10$. For the testing samples, the GEBV accuracy had an average of $0.46{\pm}0.10$ under the GBLUP model, ranging from $0.20{\pm}0.18$ for protein to $0.65{\pm}0.06$ for drip loss. Under the Bayes B model, the GEBV accuracy ranged from $0.04{\pm}0.09$ for NPCC marbling score to $0.72{\pm}0.05$ for drip loss with an average of $0.38{\pm}0.13$. The GEBV accuracy increased with the size of the training data and heritability. In general, the GEBV accuracies under the Bayes B model were lower than under the GBLUP model, especially when the training sample size was small. Our results suggest that a much greater training sample size is needed to get better GEBV accuracies for the testing samples.

Genetic evaluation and accuracy analysis of commercial Hanwoo population using genomic data

  • Gwang Hyeon Lee;Yeon Hwa Lee;Hong Sik Kong
    • 한국동물생명공학회지
    • /
    • 제38권1호
    • /
    • pp.32-37
    • /
    • 2023
  • This study has evaluated the genomic estimated breeding value (GEBV) of the commercial Hanwoo population using the genomic best linear unbiased prediction (GBLUP) method and genomic information. Furthermore, it analyzed the accuracy and realized accuracy of the GEBV. 1,740 heads of the Hanwoo population which were analyzed using a single nucleotide polymorphism (SNP) Chip has selected as the test population. For carcass weight (CWT), eye muscle area (EMA), back fat thickness (BFT), and marbling score (MS), the mean GEBVs estimated using the GBLUP method were 3.819, 0.740, -0.248, and 0.041, respectively and the accuracy of each trait was 0.743, 0.728, 0.737, and 0.765, respectively. The accuracy of the breeding value was affected by heritability. The accuracy was estimated to be low in EMA with low heritability and high in MS with high heritability. Realized accuracy values of 0.522, 0.404, 0.444, and 0.539 for CWT, EMA, BFT, and MS, respectively, showing the same pattern as the accuracy value. The results of this study suggest that the breeding value of each individual can be estimated with higher accuracy by estimating the GEBV using the genomic information of 18,499 reference populations. If this method is used and applied to individual selection in a commercial Hanwoo population, more precise and economical individual selection is possible. In addition, continuous verification of the GBLUP model and establishment of a reference population suitable for commercial Hanwoo populations in Korea will enable a more accurate evaluation of individuals.

Effects of preselection of genotyped animals on reliability and bias of genomic prediction in dairy cattle

  • Togashi, Kenji;Adachi, Kazunori;Kurogi, Kazuhito;Yasumori, Takanori;Tokunaka, Kouichi;Ogino, Atsushi;Miyazaki, Yoshiyuki;Watanabe, Toshio;Takahashi, Tsutomu;Moribe, Kimihiro
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제32권2호
    • /
    • pp.159-169
    • /
    • 2019
  • Objective: Models for genomic selection assume that the reference population is an unselected population. However, in practice, genotyped individuals, such as progeny-tested bulls, are highly selected, and the reference population is created after preselection. In dairy cattle, the intensity of selection is higher in males than in females, suggesting that cows can be added to the reference population with less bias and loss of accuracy. The objective is to develop formulas applied to any genomic prediction studies or practice with preselected animals as reference population. Methods: We developed formulas for calculating the reliability and bias of genomically enhanced breeding values (GEBV) in the reference population where individuals are preselected on estimated breeding values. Based on the formulas presented, deterministic simulation was conducted by varying heritability, preselection percentage, and the reference population size. Results: The number of bulls equal to a cow regarding the reliability of GEBV was expressed through a simple formula for the reference population consisting of preselected animals. The bull population was vastly superior to the cow population regarding the reliability of GEBV for low-heritability traits. However, the superiority of reliability from the bull reference population over the cow population decreased as heritability increased. Bias was greater for bulls than cows. Bias and reduction in reliability of GEBV due to preselection was alleviated by expanding reference population. Conclusion: Cows are easier in expanding reference population size compared with bulls and alleviate bias and reduction in reliability of GEBV of bulls which are highly preselected than cows by expanding the cow reference population.

Comparison of accuracy of breeding value for cow from three methods in Hanwoo (Korean cattle) population

  • Hyo Sang Lee;Yeongkuk Kim;Doo Ho Lee;Dongwon Seo;Dong Jae Lee;Chang Hee Do;Phuong Thanh N. Dinh;Waruni Ekanayake;Kil Hwan Lee;Duhak Yoon;Seung Hwan Lee;Yang Mo Koo
    • Journal of Animal Science and Technology
    • /
    • 제65권4호
    • /
    • pp.720-734
    • /
    • 2023
  • In Korea, Korea Proven Bulls (KPN) program has been well-developed. Breeding and evaluation of cows are also an essential factor to increase earnings and genetic gain. This study aimed to evaluate the accuracy of cow breeding value by using three methods (pedigree index [PI], pedigree-based best linear unbiased prediction [PBLUP], and genomic-BLUP [GBLUP]). The reference population (n = 16,971) was used to estimate breeding values for 481 females as a test population. The accuracy of GBLUP was 0.63, 0.66, 0.62 and 0.63 for carcass weight (CWT), eye muscle area (EMA), back-fat thickness (BFT), and marbling score (MS), respectively. As for the PBLUP method, accuracy of prediction was 0.43 for CWT, 0.45 for EMA, 0.43 for MS, and 0.44 for BFT. Accuracy of PI method was the lowest (0.28 to 0.29 for carcass traits). The increase by approximate 20% in accuracy of GBLUP method than other methods could be because genomic information may explain Mendelian sampling error that pedigree information cannot detect. Bias can cause reducing accuracy of estimated breeding value (EBV) for selected animals. Regression coefficient between true breeding value (TBV) and GBLUP EBV, PBLUP EBV, and PI EBV were 0.78, 0.625, and 0.35, respectively for CWT. This showed that genomic EBV (GEBV) is less biased than PBLUP and PI EBV in this study. In addition, number of effective chromosome segments (Me) statistic that indicates the independent loci is one of the important factors affecting the accuracy of BLUP. The correlation between Me and the accuracy of GBLUP is related to the genetic relationship between reference and test population. The correlations between Me and accuracy were -0.74 in CWT, -0.75 in EMA, -0.73 in MS, and -0.75 in BF, which were strongly negative. These results proved that the estimation of genetic ability using genomic data is the most effective, and the smaller the Me, the higher the accuracy of EBV.

Genome-wide Association Study (GWAS) and Its Application for Improving the Genomic Estimated Breeding Values (GEBV) of the Berkshire Pork Quality Traits

  • Lee, Young-Sup;Jeong, Hyeonsoo;Taye, Mengistie;Kim, Hyeon Jeong;Ka, Sojeong;Ryu, Youn-Chul;Cho, Seoae
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제28권11호
    • /
    • pp.1551-1557
    • /
    • 2015
  • The missing heritability has been a major problem in the analysis of best linear unbiased prediction (BLUP). We introduced the traditional genome-wide association study (GWAS) into the BLUP to improve the heritability estimation. We analyzed eight pork quality traits of the Berkshire breeds using GWAS and BLUP. GWAS detects the putative quantitative trait loci regions given traits. The single nucleotide polymorphisms (SNPs) were obtained using GWAS results with p value <0.01. BLUP analyzed with significant SNPs was much more accurate than that with total genotyped SNPs in terms of narrow-sense heritability. It implies that genomic estimated breeding values (GEBVs) of pork quality traits can be calculated by BLUP via GWAS. The GWAS model was the linear regression using PLINK and BLUP model was the G-BLUP and SNP-GBLUP. The SNP-GBLUP uses SNP-SNP relationship matrix. The BLUP analysis using preprocessing of GWAS can be one of the possible alternatives of solving the missing heritability problem and it can provide alternative BLUP method which can find more accurate GEBVs.

가축 유전체정보 활용 종축 유전능력 평가 연구 - 표지인자 효과 추정 모의실험 (Study on Genetic Evaluation using Genomic Information in Animal Breeding - Simulation Study for Estimation of Marker Effects)

  • 조충일;이득환
    • Journal of Animal Science and Technology
    • /
    • 제53권1호
    • /
    • pp.1-6
    • /
    • 2011
  • 연구는 유전체분석에 대해 모의실험한 연구로써 Reference Population (RP)이 구성되었을 때, 표현형 자료가 없고 유전체자료만 있는 Juven 1 또는 Juven 2 세대에 대해 유전평가의 정확도에 대해 알아보고자 연구를 실시하였다. 모의실험의 가정으로 염색체는 1개이며 염색체길이는 100cM로 가정하였다. 초기의 유효집단의 수는 100두의 다형성이 없는 초기집단에서 유전자 효과가 없는 표지인자(Marker)를 0.1cM 및 0.5cM 간격으로 균등하게 단일 염기 돌연변이에 의한 다형성을 발생시켰고 유전자 효과가 있는 QTL 좌위는 Marker와 동수의 비율로 임의위치를 지정하여 돌연변이에 의한 변이성을 생성하였으며 이때 유전자 효과는 Gamma 분포함수(scale=1.66, shape=0.4)에서 생성하였다. 배우자(gamete) 형성과정에서 Haldane의 가정하에 유전자 재조합을 생성하였으며 돌연변이 발생율은 Marker 및 QTL 좌위에서 $2.5{\times}10^{-3}$$2.5{\times}10^{-5}$의 확률로 발생시켜 1000세대까지 세대번식을 유지하였다. 이 후 1001세대부터 1004세대까지 세대당 2000두의 자손을 생성하였으며 이 때 유전력을 0.1 및 0.5의 가정하에 1001~1002 세대에서 표현형 자료를 생성하였고, 1003~1004세대는 오직 유전체자료만 생성하였다. Bayesian 방법을 이용하여 개체별 육종가를 추정하였으며 표지인자간 거리(0.1cM, 0.5cM), 유전력(0.1, 0.5) 및 반형매 집단크기(20두, 4두)에 따라 참육종가와 추정 육종가간의 상관으로 표현되는 육종가 정확도에 대해 비교한 결과 1003세 대에서 표지인자간 거리가 0.1cM 및 0.5cM일 때 육종가의 정확도는 각각 0.87, 0.81였고, 유전력이 0.1 및 0.5 일 때 각각 0.87, 0.94로 추정되었으며, 반형매 집단의 크기가 20두 일 때 0.87, 4두 일 때 0.84로 추정되었다. 위의 결과로 미루어 보아 다량의 SNP 표지정보 및 반형매 집단의 크기가 클수록 즉, 혈연계수가 높은 집단일 때 육종가의 정확도는 높게 나타났다. 유전체선발의 활용시 비교적 높은 정확도로써 조기선발이 가능하며 이로 인한 세대간격을 단축시킬 수 있어 개량의 효율을 높일 수 있을 것으로 사료된다. 반면에 유전체선발은 분석비용이 비싸며, 지속적인 유전체 선발시 특정유전자 선호로 인한 유전적 부동(Genetic Drift) 현상이 발생될 수 있기 때문에 지속적인 SNP 발굴에 대한 노력이 필요한(Meuwissen 2003) 단점이 있으나 한우 또는 젖소와 같은 대가축과 같이 세대간격이 긴 가축에서 유전체선발 할 경우 조기선발로 인한 세대간격 단축과 유전평가의 높은 정확도(0.8이상)로 인해 개량의 효율을 극대화 할 수 있을 것으로 사료된다.