• Title/Summary/Keyword: Genome-wide

Search Result 693, Processing Time 0.024 seconds

Compositional Correlations in Canine Genome Reflects Similarity with Human Genes

  • Joy, Faustin;Basak, Surajit;Gupta, Sanjib Kumar;Das, Pranab Jyoti;Ghosh, Shankar Kumar;Ghosh, Tapash Chandra
    • BMB Reports
    • /
    • v.39 no.3
    • /
    • pp.240-246
    • /
    • 2006
  • The base compositional correlations that hold among various coding and noncoding regions of the canine genome have been analysed. The distribution pattern of genes, on the basis of $GC_3$ composition, shows a wide range similar to that observed in human. However the occurrence of maximum number of genes was observed in the range of 65-75% of $GC_3$ composition. The correlation between the coding DNA sequences of canine with the different noncoding regions (introns and flanking regions) is found to be significant and in many cases the degree of correlation show similarity to human genome. We found that these correlations are not limited to the GC content alone, but is holding at the level of the frequency of individual bases as well. The present study suggests that canines ideally belong to the predicted 'general mammalian pattern' of genome composition along with human beings.

Development of InDel markers to identify Capsicum disease resistance using whole genome resequencing

  • Karna, Sandeep;Ahn, Yul-Kyun
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.228-235
    • /
    • 2018
  • In this study, two pepper varieties, PRH1 (powdery mildew resistance line) and Saengryeg (powdery mildew resistance line), were resequenced using next generation sequencing technology in order to develop InDel markers. The genome-wide discovery of InDel variation was performed by comparing the whole-genome resequencing data of two pepper varieties to the Capsicum annuum cv. CM334 reference genome. A total of 334,236 and 318,256 InDels were identified in PRH1 and Saengryeg, respectively. The greatest number of homozygous InDels were discovered on chromosome 1 in PRH1 (24,954) and on chromosome 10 (29,552) in Saengryeg. Among these homozygous InDels, 19,094 and 4,885 InDels were distributed in the genic regions of PRH1 and Saengryeg, respectively, and 198,570 and 183,468 InDels were distributed in the intergenic regions. We have identified 197,821 polymorphic InDels between PRH1 and Saengryeg. A total of 11,697 primers sets were generated, resulting in the discovery of four polymorphic InDel markers. These new markers will be utilized in order to identify disease resistance genotypes in breeding populations. Therefore, our results will make a one-step advancement in whole genome resequencing and add genetic resource datasets in pepper breeding research.

EvoSNP-DB: A database of genetic diversity in East Asian populations

  • Kim, Young Uk;Kim, Young Jin;Lee, Jong-Young;Park, Kiejung
    • BMB Reports
    • /
    • v.46 no.8
    • /
    • pp.416-421
    • /
    • 2013
  • Genome-wide association studies (GWAS) have become popular as an approach for the identification of large numbers of phenotype-associated variants. However, differences in genetic architecture and environmental factors mean that the effect of variants can vary across populations. Understanding population genetic diversity is valuable for the investigation of possible population specific and independent effects of variants. EvoSNP-DB aims to provide information regarding genetic diversity among East Asian populations, including Chinese, Japanese, and Korean. Non-redundant SNPs (1.6 million) were genotyped in 54 Korean trios (162 samples) and were compared with 4 million SNPs from HapMap phase II populations. EvoSNP-DB provides two user interfaces for data query and visualization, and integrates scores of genetic diversity (Fst and VarLD) at the level of SNPs, genes, and chromosome regions. EvoSNP-DB is a web-based application that allows users to navigate and visualize measurements of population genetic differences in an interactive manner, and is available online at [http://biomi.cdc.go.kr/EvoSNP/].

CGHscape: A Software Framework for the Detection and Visualization of Copy Number Alterations

  • Jeong, Yong-Bok;Kim, Tae-Min;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.6 no.3
    • /
    • pp.126-129
    • /
    • 2008
  • The robust identification and comprehensive profiling of copy number alterations (CNAs) is highly challenging. The amount of data obtained from high-throughput technologies such as array-based comparative genomic hybridization is often too large and it is required to develop a comprehensive and versatile tool for the detection and visualization of CNAs in a genome-wide scale. With this respective, we introduce a software framework, CGHscape that was originally developed to explore the CNAs for the study of copy number variation (CNV) or tumor biology. As a standalone program, CGHscape can be easily installed and run in Microsoft Windows platform. With a user-friendly interface, CGHscape provides a method for data smoothing to cope with the intrinsic noise of array data and CNA detection based on SW-ARRAY algorithm. The analysis results can be demonstrated as log2 plots for individual chromosomes or genomic distribution of identified CNAs. With extended applicability, CGHscape can be used for the initial screening and visualization of CNAs facilitating the cataloguing and characterizing chromosomal alterations of a cohort of samples.

Identification of loci affecting teat number by genome-wide association studies on three pig populations

  • Tang, Jianhong;Zhang, Zhiyan;Yang, Bin;Guo, Yuanmei;Ai, Huashui;Long, Yi;Su, Ying;Cui, Leilei;Zhou, Liyu;Wang, Xiaopeng;Zhang, Hui;Wang, Chengbin;Ren, Jun;Huang, Lusheng;Ding, Nengshui
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.1
    • /
    • pp.1-7
    • /
    • 2017
  • Objective: Three genome-wide association studies (GWAS) and a meta-analysis of GWAS were conducted to explore the genetic mechanisms underlying variation in pig teat number. Methods: We performed three GWAS and a meta-analysis for teat number on three pig populations, including a White Duroc${\times}$Erhualian $F_2$ resource population (n = 1,743), a Chinese Erhualian pig population (n = 320) and a Chinese Sutai pig population (n = 383). Results: We detected 24 single nucleotide polymorphisms (SNPs) that surpassed the genome-wide significant level on Sus Scrofa chromosomes (SSC) 1, 7, and 12 in the $F_2$ resource population, corresponding to four loci for pig teat number. We highlighted vertnin (VRTN) and lysine demethylase 6B (KDM6B) as two interesting candidate genes at the loci on SSC7 and SSC12. No significant associated SNPs were identified in the meta-analysis of GWAS. Conclusion: The results verified the complex genetic architecture of pig teat number. The causative variants for teat number may be different in the three populations

Genome-wide Methylation Analysis and Validation of Cancer Specific Biomarker of Head and Neck Cancer (전장유전체수준 메틸레이션 분석을 통한 두경부암 특이 메틸레이션 바이오마커의 발굴)

  • Chang, Jae Won;Park, Ki Wan;Hong, So-Hye;Jung, Seung-Nam;Liu, Lihua;Kim, Jin Man;Oh, Taejeong;Koo, Bon Seok
    • Korean Journal of Head & Neck Oncology
    • /
    • v.33 no.1
    • /
    • pp.21-29
    • /
    • 2017
  • Methylation of CpG islands in the promoter region of genes acts as a significant mechanism of epigenetic gene silencing in head and neck squamous cell carcinoma (HNSCC). DNA methylation markers are particularly advantageous because DNA methylation is an early event in tumorigenesis, and the epigenetic modification, 5-methylcytosine, is a stable mark. In the present study, we assessed the genome-wide preliminary screening and were to identify novel methylation biomarker candidate in HNSCC. Genome-wide methylation analysis was performed on 10 HNSCC tumors using the Methylated DNA Isolation Assay (MeDIA) CpG island microarray. Validation was done using immunohistochemistry using tissue microarray of 135 independent HNSCC tumors. In addition, in vitro proliferation, migration/invasion assays, RT-PCR and immunoblotting were performed to elucidate molecular regulating mechanisms. Our preliminary validation using CpG microarray data set, immunohisto-chemistry for HNSCC tumor tissues and in vitro functional assays revealed that methylation of the Homeobox B5 (HOXB5) and H6 Family Homeobox 2 (HMX2) could be possible novel methylation biomarkers in HNSCC.

Genome-wide Expression Profiling of Piperine and Piper nigrum Linne (호초(胡椒)와 Piperine에 의한 총체적 유전자 발현 비교)

  • Jo, Eun-Young;Jeong, Ji-Cheon
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.24 no.5
    • /
    • pp.831-836
    • /
    • 2010
  • In addition to spice, black pepper (Piper nigrum Linne : PnL) has been used as herbal medicine because of its function in anti-oxidation, anti-inflammation, and anti-carcinogenesis. Recently, it has been reported that piperine, a component of PnL, inhibits adipocyte differentiation by repressing various adipogenic gene expressions. In this study, we determined whether piperine is a major constituent of PnL that confers the anti-adipogenic activity at whole genome level. Differentiation of 3T3-L1 pre-adipocytes was induced in presence of PnL extract or piperine. To compare genes that are regulated by PnL extract or piperine, we performed expression profiling using microarrays (Agilent Mouse 44k 4plex). RNA samples were labeled with Cy3 and Cy5, respectively. Labeled samples were hybridized to the microarrays. Results were filtered and cut off set p<0.05. Genes exhibiting significant differences in expression level were classified into Gene Ontology (GO)-based functional categories (http://www.geneontology.org) and KEGG (http://www.genome.jp/kegg/). Extract of PnL and its component piperine reduced lipid accumulation in 3T3-L1 cells during adipogenesis. Such anti-adipogenic activity appears to result from down-regulation of transcription factor genes involved in adipogenesis, and other genes involved in fatty acid synthesis, transport, triglyceride synthesis, and carbohydrate metabolism. These genome-wide studies lead to conclude that piperine, as a critical component of PnL, plays common role with PnL in anti-adipogenesis.

Application of Structural Equation Models to Genome-wide Association Analysis

  • Kim, Ji-Young;Namkung, Jung-Hyun;Lee, Seung-Mook;Park, Tae-Sung
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.150-158
    • /
    • 2010
  • Genome-wise association studies (GWASs) have become popular approaches to identify genetic variants associated with human biological traits. In this study, we applied Structural Equation Models (SEMs) in order to model complex relationships between genetic networks and traits as risk factors. SEMs allow us to achieve a better understanding of biological mechanisms through identifying greater numbers of genes and pathways that are associated with a set of traits and the relationship among them. For efficient SEM analysis for GWASs, we developed a procedure, comprised of four stages. In the first stage, we conducted single-SNP analysis using regression models, where age, sex, and recruited area were included as adjusting covariates. In the second stage, Fisher's combination test was conducted for each gene to detect significant genes using p-values obtained from the single-SNP analysis. In the third stage, Fisher's exact test was adopted to determine which biological pathways were enriched with significant SNPs. Finally, based on a pathway that was associated with the four traits in common, a SEM was fit to model a causal relationship among the genetic factors and traits. We applied our SEM model to GWAS data with four central obesity related traits: suprailiac and subscapular measures for upper body fat, BMI, and hypertension. Study subjects were collected from two Korean cohort regions. After quality control, 327,872 SNPs for 8842 individuals were included in the analysis. After comparing two SEMs, we concluded that suprailiac and subscapular measures may indirectly affect hypertension susceptibility by influencing BMI. In conclusion, our analysis demonstrates that SEMs provide a better understanding of biological mechanisms by identifying greater numbers of genes and pathways.

Genome-wide Copy Number Variation in a Korean Native Chicken Breed (한국 토종닭의 전장 유전체 복제수변이(CNV) 발굴)

  • Cho, Eun-Seok;Chung, Won-Hyong;Choi, Jung-Woo;Jang, Hyun-Jun;Park, Mi-Na;Kim, Namshin;Kim, Tae-Hun;Lee, Kyung-Tai
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.305-311
    • /
    • 2014
  • Copy number variation (CNV) is a form of structural variation that shows various numbers of copies in segments of the DNA. It has been shown to account for phenotypic variations in human diseases and agricultural production traits. Currently, most of chicken breeds in the poultry industry are based on European-origin breeds that have been mostly provided from several international breeding companies. Therefore, National Institute of Animal Science, RDA has been trying to restore and improve Korean native chicken breeds (12 lines of 5 breeds) for about 20 years. Thanks to the recent advance of sequencing technologies, genome-wide CNV can be accessed in the higher resolution throughout the genome of species of interest. However, there is no systematic study available to dissect the CNV in the native chicken breed in Korea. Here, we report genome-wide copy number variations identified from a genome of Korean native chicken (Line L) by comparing between the chicken reference sequence assembly (Gallus gallus) and a de novo sequencing assembly of the Korean native chicken (Line L). Throughout all twenty eight chicken autosomes, we identified a total of 501 CNVs; defined as gain and loss of duplication and deletion respectively. Furthermore, we performed gene ontology (GO) analysis for the putative CNVs using DAVID, leading to 68 GO terms clustered independently. Of the clustered GO terms, genes related to transcription and gene regulation were mainly detected. This study provides useful genomic resource to investigate potential biological implications of CNVs with traits of interest in the Korean native chicken.

Effect of Genetic Predisposition on Blood Lipid Traits Using Cumulative Risk Assessment in the Korean Population

  • Go, Min-Jin;Hwang, Joo-Yeon;Kim, Dong-Joon;Lee, Hye-Ja;Jang, Han-Byul;Park, Kyung-Hee;Song, Ji-Hyun;Lee, Jong-Young
    • Genomics & Informatics
    • /
    • v.10 no.2
    • /
    • pp.99-105
    • /
    • 2012
  • Dyslipidemia, mainly characterized by high triglyceride (TG) and low high-density lipoprotein cholesterol (HDL-C) levels, is an important etiological factor in the development of cardiovascular disease (CVD). Considering the relationship between childhood obesity and CVD risk, it would be worthwhile to evaluate whether previously identified lipid-related variants in adult subjects are associated with lipid variations in a childhood obesity study (n = 482). In an association analysis for 16 genome-wide association study (GWAS)-based candidate loci, we confirmed significant associations of a genetic predisposition to lipoprotein concentrations in a childhood obesity study. Having two loci (rs10503669 at LPL and rs16940212 at LIPC) that showed the strongest association with blood levels of TG and HDL-C, we calculated a genetic risk score (GRS), representing the sum of the risk alleles. It has been observed that increasing GRS is significantly associated with decreased HDL-C (effect size, $-1.13{\pm}0.07$) compared to single nucleotide polymorphism combinations without two risk variants. In addition, a positive correlation was observed between allelic dosage score and risk allele (rs10503669 at LPL) on high TG levels (effect size, $10.89{\pm}0.84$). These two loci yielded consistent associations in our previous meta-analysis. Taken together, our findings demonstrate that the genetic architecture of circulating lipid levels (TG and HDL-C) overlap to a large extent in childhood as well as in adulthood. Post-GWAS functional characterization of these variants is further required to elucidate their pathophysiological roles and biological mechanisms.