DOI QR코드

DOI QR Code

Genome-wide Copy Number Variation in a Korean Native Chicken Breed

한국 토종닭의 전장 유전체 복제수변이(CNV) 발굴

  • Cho, Eun-Seok (National Institute of Animal Science, RDA) ;
  • Chung, Won-Hyong (Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Choi, Jung-Woo (National Institute of Animal Science, RDA) ;
  • Jang, Hyun-Jun (College of Pharmacy, Dankook University) ;
  • Park, Mi-Na (National Institute of Animal Science, RDA) ;
  • Kim, Namshin (Korean Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology) ;
  • Kim, Tae-Hun (National Institute of Animal Science, RDA) ;
  • Lee, Kyung-Tai (National Institute of Animal Science, RDA)
  • 조은석 (농촌진흥청 국립축산과학원) ;
  • 정원형 (한국생명공학연구원 국가생명연구자원정보센터) ;
  • 최정우 (농촌진흥청 국립축산과학원) ;
  • 장현준 (단국대학교 약학대학) ;
  • 박미나 (농촌진흥청 국립축산과학원) ;
  • 김남신 (한국생명공학연구원 국가생명연구자원정보센터) ;
  • 김태헌 (농촌진흥청 국립축산과학원) ;
  • 이경태 (농촌진흥청 국립축산과학원)
  • Received : 2014.11.04
  • Accepted : 2014.12.01
  • Published : 2014.12.31

Abstract

Copy number variation (CNV) is a form of structural variation that shows various numbers of copies in segments of the DNA. It has been shown to account for phenotypic variations in human diseases and agricultural production traits. Currently, most of chicken breeds in the poultry industry are based on European-origin breeds that have been mostly provided from several international breeding companies. Therefore, National Institute of Animal Science, RDA has been trying to restore and improve Korean native chicken breeds (12 lines of 5 breeds) for about 20 years. Thanks to the recent advance of sequencing technologies, genome-wide CNV can be accessed in the higher resolution throughout the genome of species of interest. However, there is no systematic study available to dissect the CNV in the native chicken breed in Korea. Here, we report genome-wide copy number variations identified from a genome of Korean native chicken (Line L) by comparing between the chicken reference sequence assembly (Gallus gallus) and a de novo sequencing assembly of the Korean native chicken (Line L). Throughout all twenty eight chicken autosomes, we identified a total of 501 CNVs; defined as gain and loss of duplication and deletion respectively. Furthermore, we performed gene ontology (GO) analysis for the putative CNVs using DAVID, leading to 68 GO terms clustered independently. Of the clustered GO terms, genes related to transcription and gene regulation were mainly detected. This study provides useful genomic resource to investigate potential biological implications of CNVs with traits of interest in the Korean native chicken.

복제수변이(Copy number variation, CNV)는 DNA 다양한 구조적 변화의 한 형태이다. 복제수변이는 인간의 질병 및 농업의 생산성에 영향을 미치는 것으로 알려져 있다. 이전 우리나라의 닭의 품종은 유럽에서 유입되어진 품종을 기반으로 구축되어져 있었다. 따라서 농촌진흥청 국립축산과학원에서는 20년 동안 재래품종을 복원하려고 노력하였고, 5품종 12계통으로 복원하였다. 최근 염기서열분석 기술의 발달로, 해상도가 좋은 게놈 전체의 복제수변이를 발굴할 수 있게 되었다. 그러나 한국 재래닭 품종에 대해서는 체계적인 연구가 이루어지지 않고 있다. 본 연구에서는 한국 재래 닭(계통 L)에 대해서 게놈 전체의 염기서열을 분석하고 닭의 참고서열과 비교하여 재래닭에서 확인된 복제수 변이를 보고하였다. 닭의 28개 염색체에서 총 501개의 복제수 변이를 확인하였고, 이를 Gain과 Loss로 나누어서 표시하였다. 또한 우리는 501개의 복제수 변이를 포함하고 있는 유전자의 기능을 분류하였다. 그 결과, 전사 및 유전자 조절에 관련된 유전자들이 많이 분류되었다. 본 연구의 결과는 복제수 변이와 한국 재래닭의 경제형질 간의 연관성을 설명할 수 있는 기초자료로 활용될 것으로 사료된다.

Keywords

References

  1. Alkan C, Kidd JM, Marques-Bonet T, Aksay G, Antonacci F, Hormozdiari F, Kitzman JO, Baker C, Malig M, Mutlu O, Sahinalp SC, Gibbs RA, Eichler EE 2009 Personalized copy number and segmental duplication maps using nextgeneration sequencing. Nat Genet 41(10):1061-1067. https://doi.org/10.1038/ng.437
  2. Bickhart DM, Hou Y, Schroeder SG, Alkan C, Cardone MF, Matukumalli LK, Song J, Schnabel RD, Ventura M, Taylor JF, Garcia JF, Van Tassell CP, Sonstegard TS, Eichler EE, Liu GE 2012 Copy number variation of individual cattle genomes using next-generation sequencing. Genome Res 22 (4):778-790. https://doi.org/10.1101/gr.133967.111
  3. Choi JW, Lee KT, Liao X, Stothard P, Chung WH, Jeon HJ, Miller SP, Choi SY, Lee JK, Yang B, Lee KT, Han KJ, Kim HC, Jeong D, Oh JD, Kim N, Kim TH, Lee HK, Lee SJ 2014 Whole-genome analyses of Korean native and holstein cattle breeds by massively parallel sequencing. PLoS One 9(7):e101127. https://doi.org/10.1371/journal.pone.0101127
  4. Choi JW, Lee KT, Liao X, Stothard P, An HS, Ahn S, Lee S, Lee SY, Moore SS, Kim TH 2013 Genome-wide copy number variation in Hanwoo, Black Angus, and Holstein cattle. Mammalian Genome 24:151-163. https://doi.org/10.1007/s00335-013-9449-z
  5. Crooijmans RP, Fife MS, Fitzgerald TW, Strickland S, Cheng HH, Kaiser P, Redon R, Groenen MA 2013 Large scale variation in DNA copy number in chicken breeds. BMC Genomics 14:398. https://doi.org/10.1186/1471-2164-14-398
  6. Daniel LB, Caleb FD, Lisa AG, Jeffrey LN 1999 Identification of three novel $Ca^{2+}$ channel ${\gamma}$ subunit genes reveals molecular diversification by tandem and chromosome duplication. Genome Res 9:1204-1213. https://doi.org/10.1101/gr.9.12.1204
  7. Di-Poi N, Montoya-Burgos J, Miller H, Pourquiė O, Milinkovich MC, Duboule D 2010 Changes in Hox genes' structure and function during the evolution of the squamate body plan. Nature 464(7285):99-103. https://doi.org/10.1038/nature08789
  8. Fan WL, Ng CS, Chen CF, Lu MJ, Chen YH, Liu CJ, Wu SM, Chen CK, Chen JJ, Mao CT, Lai YT, Lo WS, Chang WH, Li WH 2013 Genome-wide patterns of genetic variation in two domestic chickens. Genome Biol Evol 5(7):1376-1392. https://doi.org/10.1093/gbe/evt097
  9. Griffin DK, Robertson LB, Tempest HG, Vignal A, Fillon V, Crooijmans RP, Groenen MA, Deryusheva S, Gaginskaya E, Carre W, Waddington D, Talbot R, Volker M, Masabanda JS, Burt DW 2008 Whole genome comparative studies between chicken and turkey and their implications for avian genome evolution. BMC Genomics 9:168. https://doi.org/10.1186/1471-2164-9-168
  10. Han SH, Shin KY, Lee SS, Ko MS, Jeong DK, Jeon JT, Cho IC 2008 Effects of ADCYP1R1, FABP3, FABP4, MC4R, MYL2 genotypes on growth traits in F2 population between Landrace and Jeju Native Black Pig. J Anim Sci Tech 52:621-632.
  11. Hou Y, Liu GE, Bickhart DM, Cardone MF, Wang K, Kim ES, Matukumalli LK, Ventura M, Song J, VanRaden PM, Sonstegard CS, Van Tassell CP 2011 Genomic characteristics of cattle copy number variations. BMC Genomics 12:127. https://doi.org/10.1186/1471-2164-12-127
  12. Jia X, Chen S, Zhou H, Li D, Liu W, Yang N 2012 Copy number variations identified in the chicken using a 60 K SNP BeadChip. Anim Genet 44:276-284.
  13. Lee P, Yeon SH, Kim JH, Ko YG, Son JK, Lee HH, Cho CY 2011 Genetic composition of Korean native chicken populations - National scale molecular genetic evaluation based on microsatellite markers. Korean J Poult Sci 38(2):81-87. https://doi.org/10.5536/KJPS.2011.38.2.081
  14. Lee SH, Choi BH, Lim D, Gondro C, Cho YM, Dang CG, Sharma A, Jang GW, Lee KT, Yoon D, Lee HK, Yeon SH, Yang BS, Kang HS, Hong SK 2013 Genome-wide association study identifies major loci for carcass weight on BTA14 in Hanwoo(Korean cattle). PLoS ONE 8(10):e74677. https://doi.org/10.1371/journal.pone.0074677
  15. Luo J, Yu Y, Mitra A, Chang S, Zhang H, Liu G, Yang N, Song J 2013 Genome-wide copy number variant analysis in inbred chickens lines with different susceptibility to Marek's disease. G3 (Bethesda) 3:217-223. https://doi.org/10.1534/g3.112.005132
  16. NIAS 2012 Livestock Research Leading Result.
  17. Nicholas TJ, Cheng Z, Ventura M, Mealey K, Eichler EE, Akey JM 2009 The genomic architecture of segmental duplications and associated copy number variants in dogs. Genome Res 19:491-499.
  18. Oh JD, Lee KW, Seo OS, Cho BW, Jeon GJ, Lee HK, Kong HS 2010 Estimation of genetic characteristics and cumulative power of discrimination in Korean native chicken and Korean native commercial chicken. Journal of Life Science 20(7):1086-1092. https://doi.org/10.5352/JLS.2010.20.7.1086
  19. Richard M, David S 1998 Pathological consequences of sequence duplications in the human genome. Genome Res 8:1007-1021.
  20. Skinner BM, Robertson LB, Tempest HG, Langley EJ, Ioannou D, Fowler KE, Crooijmans RP, Hall AD, Griffin DK, Volker M 2009 Comparative genomics in chicken and Pekin duck using FISH mapping and microarray analysis. BMC Genomics 10:357. https://doi.org/10.1186/1471-2164-10-357
  21. Stothard P, Choi JW, Basu U, Sumner-Thomson JM, Meng Y, Liao X, Moore SS 2011 Whole genome resequencing of black Angus and Holstein cattle for SNP and CNV discovery. BMC Genomics 12:559. https://doi.org/10.1186/1471-2164-12-559
  22. Suh SW, Cho CY, Kim Jh, Choi SB, Kim YS, Kim H, Seong HH, Lim HT, Cho JH, Ko YG 2013 Analysis of genetic characteristics and probability of individual discrimination in Korean indigenous chicken brands by microsatellite marker. JAST 55(3):185-194. https://doi.org/10.5187/JAST.2013.55.3.185
  23. Vignal A, Milan D, SanCristobal M, Eggen A 2002 A review on SNP and other types of molecular markers and their use in animal genetics. Genet Sel Evol 34:275-305. https://doi.org/10.1186/1297-9686-34-3-275
  24. Volker M, Backstrom N, Skinner BM, Langley EJ, Bunzey SK, Ellegren H, Griffin DK 2010 Copy number variation, chromosome rearrangement, and their association with recombination during avian evolution. Genome Res 20:503-511. https://doi.org/10.1101/gr.103663.109
  25. Yoon DH, Kong HS, Oh JD, Lee JH, Cho BW, Kim JD, Jeon KJ, Jo CY, Jeon GJ, Lee HK 2005 Establishment of an individual identification system based on microsatellite polymorphisms in Korean cattle (Hanwoo). Asian-Aust J Anim Sci 18:762-766. https://doi.org/10.5713/ajas.2005.762

Cited by

  1. Variance Component Quantitative Trait Locus Analysis for Body Weight Traits in Purebred Korean Native Chicken vol.29, pp.1, 2016, https://doi.org/10.5713/ajas.15.0193
  2. The breeding history and commercial development of the Korean native chicken vol.73, pp.01, 2017, https://doi.org/10.1017/S004393391600088X
  3. Estimation of heritability and genetic correlation of body weight gain and growth curve parameters in Korean native chicken vol.31, pp.1, 2018, https://doi.org/10.5713/ajas.17.0179