• Title/Summary/Keyword: Genome Variation

Search Result 286, Processing Time 0.021 seconds

The complete mitochondrial genome of Arabidopsis thaliana (Brassicaceae) isolated in Korea

  • PARK, Jongsun;XI, Hong;KIM, Yongsung
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.2
    • /
    • pp.176-180
    • /
    • 2021
  • Arabidopsis thaliana (L.) Heynh. is a small plant species that serves as a model organism of plant biology and genetics. Here, we present the first complete mitochondrial genome of Korean A. thaliana natural isolate (named as 180404IB4), which is 368,875 bp long and contains 58 genes (33 protein-coding genes, 22 tRNAs, and three rRNAs), with a GC ratio of 44.8%. Sixty-four single-nucleotide polymorphisms and 11 insertion and deletion regions (1,089 bp in length) are identified against the Col-0 ecotype, showing one large insertion of 1,069 bp without structural variation. Phylogenetic trees constructed from 30 conserved genes indicate that the 180404IB4 mitochondrial genome is clustered with Col-0 and three East Asian ecotypes.

The complete chloroplast genome of Campsis grandiflora (Bignoniaceae)

  • PARK, Jongsun;XI, Hong
    • Korean Journal of Plant Taxonomy
    • /
    • v.52 no.3
    • /
    • pp.156-172
    • /
    • 2022
  • Campsis grandiflora (Thunb.) K. Schum is an ornamental species with various useful biological effects. The chloroplast genome of C. grandiflora isolated in Korea is 154,293 bp long (GC ratio: 38.1%) and has four subregions: 84,121 bp of large single-copy (36.2%) and 18,521 bp of small single-copy (30.0%) regions are separated by 24,332 bp of inverted repeat (42.9%) regions including 132 genes (87 protein-coding genes, eight rRNAs, and 37 tRNAs). One single-nucleotide polymorphism and five insertion and deletion (INDEL) regions (40-bp in total) were identified, indicating a low level of intraspecific variation in the chloroplast genome. All five INDEL regions were linked to the repetitive sequences. Seventy-two normal simple sequence repeats (SSRs) and 47 extended SSRs were identified to develop molecular markers. The phylogenetic trees of 29 representative Bignoniaceae chloroplast genomes indicate that the tribe-level phylogenic relationship is congruent with the findings of previous studies.

Genomic Variations of Rice Regenerants from Tissue Culture Revealed by Whole Genome Re-Sequencing

  • Qin, Yang;Shin, Kong-Sik;Woo, Hee-Jong;Lim, Myung-Ho
    • Plant Breeding and Biotechnology
    • /
    • v.6 no.4
    • /
    • pp.426-433
    • /
    • 2018
  • Plant tissue culture is a technique that has invariably been used for various purposes such as obtaining transgenic plants for crop improvement or functional analysis of genes. However, this process can be associated with a variety of genetic and epigenetic instabilities in regenerated plants, termed as somaclonal variation. In this study, we investigated mutation spectrum, chromosomal distributions of nucleotide substitution types of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) by whole genome re-sequencing between Dongjin and Nipponbare along with regenerated plants of Dongjin from different induction periods. Results indicated that molecular spectrum of mutations in regenerated rice against Dongjin genome ranged from $9.14{\times}10^{-5}$ to $1.37{\times}10^{-4}$ during one- to three-month callus inductions, while natural mutation rate between Dongjin and Nipponbare genomes was $6.97{\times}10^{-4}$. Non-random chromosome distribution of SNP and InDel was observed in both regenerants and Dongjin genomes, with the highest densities on chromosome 11. The transition to transversion ratio was 2.25 in common SNPs of regenerants against Dongjin genome with the highest C/T transition frequency, which was similar to that of Dongjin against Nipponbare genome.

Identification of a Copy Number Variation on Chromosome 20q13.12 Associated with Osteoporotic Fractures in the Korean Population

  • Park, Tae-Joon;Hwang, Mi Yeong;Moon, Sanghoon;Hwang, Joo-Yeon;Go, Min Jin;Kim, Bong-Jo
    • Genomics & Informatics
    • /
    • v.14 no.4
    • /
    • pp.216-221
    • /
    • 2016
  • Osteoporotic fractures (OFs) are critical hard outcomes of osteoporosis and are characterized by decreased bone strength induced by low bone density and microarchitectural deterioration in bone tissue. Most OFs cause acute pain, hospitalization, immobilization, and slow recovery in patients and are associated with increased mortality. A variety of genetic studies have suggested associations of genetic variants with the risk of OF. Genome-wide association studies have reported various single-nucleotide polymorphisms and copy number variations (CNVs) in European and Asian populations. To identify CNV regions associated with OF risk, we conducted a genome-wide CNV study in a Korean population. We performed logistic regression analyses in 1,537 Korean subjects (299 OF cases and 1,238 healthy controls) and identified a total of 8 CNV regions significantly associated with OF (p < 0.05). Then, one CNV region located on chromosome 20q13.12 was selected for experimental validation. The selected CNV region was experimentally validated by quantitative polymerase chain reaction. The CNV region of chromosome 20q13.12 is positioned upstream of a family of long non-coding RNAs, LINC01260. Our findings could provide new information on the genetic factors associated with the risk of OF.

A Genome-Wide Study of Moyamoya-Type Cerebrovascular Disease in the Korean Population

  • Joo, Sung-Pil;Kim, Tae-Sun;Lee, Il-Kwon;Kim, Joon-Tae;Park, Man-Seok;Cho, Ki-Hyun
    • Journal of Korean Neurosurgical Society
    • /
    • v.50 no.6
    • /
    • pp.486-491
    • /
    • 2011
  • Objective : Structural genetic variation, including copy-number variation (CNV), constitutes a substantial fraction of total genetic variability, and the importance of structural variants in modulating susceptibility is increasingly being recognized. CNV can change biological function and contribute to pathophysiological conditions of human disease. Its relationship with common, complex human disease in particular is not fully understood. Here, we searched the human genome to identify copy number variants that predispose to moya-moya type cerebrovascular disease. Methods : We retrospectively analyzed patients who had unilateral or bilateral steno-occlusive lesions at the cerebral artery from March, 2007, to September, 2009. For the 20 subjects, including patients with moyamoya type pathologies and three normal healthy controls, we divided the subjects into 4 groups : typical moyamoya (n=6), unilateral moyamoya (n=9), progression unilateral to typical moyamoya (n=2) and non-moyamoya (n=3). Fragmented DNA was hybridized on Human610Quad v1.0 DNA analysis BeadChips (Illumina). Data analysis was performed with GenomeStudio v2009.1, Genotyping 1.1.9, cnvPartition_v2.3.4 software. Overall call rates were more than 99.8%. Results : In total, 1258 CNVs were identified across the whole genome. The average number of CNV was 45.55 per subject (CNV region was 45.4). The gain/loss of CNV was 52/249, having 4.7 fold higher frequencies in loss calls. The total CNV size was 904,657,868, and average size was 993,038. The largest portion of CNVs (613 calls) were 1M-10M in length. Interestingly, significant association between unilateral moyamoya disease (MMD) and progression of unilateral to typical moyamoya was observed. Conclusion : Significant association between unilateral MMD and progression of unilateral to typical moyamoya was observed. The finding was confirmed again with clustering analysis. These data demonstrate that certain CNV associate with moyamoya-type cerebrovascular disease.

The Study of 5,10-Methylenetetrahydrofolate Reductase Variation (MTHFR C677T) in Infertile Females with Polycystic Ovarian Syndrome (PCOS) in Korea (한국인 다낭성 난포증후군 환자에서 5,10-Methylenetetrahydrofolate Reductase의 677번 유전자 다형성에 관한 연구)

  • Lee, Kyo-Won;Jeong, Yu-Mi;Lee, Sook-Hwan;Yoon, Tae-Ki;Kwak, In-Pyung;Yoon, Seon-Woong;Choi, Joong-Sub;Kim, Kye-Hyun;Han, Jong-Sul;Kim, Sung-Do;Kim, Nam-Keun;Cha, Kwang-Yul;Baek, Kwang-Hyun;Lee, Su-Man
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.30 no.3
    • /
    • pp.217-222
    • /
    • 2003
  • Objective: To investigate the association of genetic background between MTHFR C677T genotype and infertile females with polycystic ovarian syndrome. Materials and Methods: We compared 86 infertile females with polycystic ovarian syndrome (PCOS) with 100 healthy fertile females with one or more offspring. Pyrosequencing analysis for MTHFR C677T variation was performed on polymerase chain reaction (PCR) product of study group. To validate pyrosequencing data of C677T variation for randomly selected 50 samples, we compared the pyrosequencing result with the PCR-RFLP (Restriction Fragment Length Polymorphism) result of MTHFR C677T genotype. Results: The prevalence of the C677T mutant homozygous (TT) was significantly lower (p=0.0085) in females with PCOS (8.14%) than in fertile females (21.00%). MTHFR 677 TT genotype had a decreased risk (3.7-fold) of PCOS compared with wild type (MTHFR 677 CC). Conclusion: Our data support a role for MTHFR mutant homozygous (677 TT) genotype in reducing risk in Korean infertile females with Polycystic ovarian syndrome.

UNDERSTANDING OF SINGLE NUCLEOTIDE POLYMORPHISM OF HUMAN GENOME (인간 게놈의 단일염기변형 (Single Nucleotide Polymorphism; SNP)에 대한 이해)

  • Oh, Jung-Hwan;Yoon, Byung-Wook
    • Journal of the Korean Association of Oral and Maxillofacial Surgeons
    • /
    • v.34 no.4
    • /
    • pp.450-455
    • /
    • 2008
  • A Single Nucleotide Polymorphism (SNP) is a small genetic change or variation that can occur within a DNA sequence. It's the difference of one base at specific base pair position. SNP variation occurs when a single nucleotide, such as an A, replaces one of the other three nucleotide letters-C, G, or T. On average, SNP occur in the human population more than 1 percent of the time. They occur once in every 300 nucleotides on average, which means there are roughly 10 million SNPs in the human genome. Because SNPs occur frequently throughout the genome and tend to be relatively stable genetically, they serve as excellent biological markers. They can help scientists locate genes that are associated with disease such as heart disease, cancer, diabetes. They can also be used to track the inheritance of disease genes within families. SNPs may also be associated with absorbance and clearance of therapeutic agents. In the future, the most appropriate drug for an individual could be determined in advance of treatment by analyzing a patient's SNP profile. This pharmacogenetic strategy heralds an era in which the choice of drugs for a particular patient will be based on evidence rather than trial and error (so called "personalized medicine").

Development of InDel markers to identify Capsicum disease resistance using whole genome resequencing

  • Karna, Sandeep;Ahn, Yul-Kyun
    • Journal of Plant Biotechnology
    • /
    • v.45 no.3
    • /
    • pp.228-235
    • /
    • 2018
  • In this study, two pepper varieties, PRH1 (powdery mildew resistance line) and Saengryeg (powdery mildew resistance line), were resequenced using next generation sequencing technology in order to develop InDel markers. The genome-wide discovery of InDel variation was performed by comparing the whole-genome resequencing data of two pepper varieties to the Capsicum annuum cv. CM334 reference genome. A total of 334,236 and 318,256 InDels were identified in PRH1 and Saengryeg, respectively. The greatest number of homozygous InDels were discovered on chromosome 1 in PRH1 (24,954) and on chromosome 10 (29,552) in Saengryeg. Among these homozygous InDels, 19,094 and 4,885 InDels were distributed in the genic regions of PRH1 and Saengryeg, respectively, and 198,570 and 183,468 InDels were distributed in the intergenic regions. We have identified 197,821 polymorphic InDels between PRH1 and Saengryeg. A total of 11,697 primers sets were generated, resulting in the discovery of four polymorphic InDel markers. These new markers will be utilized in order to identify disease resistance genotypes in breeding populations. Therefore, our results will make a one-step advancement in whole genome resequencing and add genetic resource datasets in pepper breeding research.

A report of the second chloroplast genome sequence in Veronica nakaiana (Plantaginaceae), an endemic species in Korea

  • LEE, Yae-Eun;LEE, Yoonkyung;KIM, Sangtae
    • Korean Journal of Plant Taxonomy
    • /
    • v.51 no.1
    • /
    • pp.109-114
    • /
    • 2021
  • Veronica nakaiana Ohwi (Plantaginaceae) is an endemic taxon on Ulleungdo Island, Korea. We report the second complete chloroplast genome sequence of V. nakaiana. Its genome size is 152,319 bp in length, comprising a large single-copy of 83,195 bp, a small single-copy of 17,702 bp, and a pair of inverted repeat regions of 25,711 bp. The complete genome contains 115 genes, including 51 protein-coding genes, four rRNA genes, and 31 tRNA genes. When comparing the two chloroplast genomes of V. nakaiana, 11 variable sites are recognized: seven SNPs and four indels. Two substitutions in the coding regions are recognized: rpoC2 (synonymous substitution) and rpl22 (nonsynonymous substitution). In nine noncoding regions, one is in the tRNA gene (trnK-UUU), one is in the intron of atpF, and seven are in the intergenic spacers (trnH-GUG~psbA, trnK-UUU, rps16~trnQ-UUG, trnC-GCA~petN, psbZ~trnG-GCC, ycf3~trnS-GGA, ycf4~cemA, and psbB~psbT). The data provide the level of genetic variation in V. nakaiana. This result will be a useful resource to formulate conservation strategies for V. nakaiana, which is a rare endemic species in Korea.

Comparison of the Affymetrix SNP Array 5.0 and Oligoarray Platforms for Defining CNV

  • Kim, Ji-Hong;Jung, Seung-Hyun;Hu, Hae-Jin;Yim, Seon-Hee;Chung, Yeun-Jun
    • Genomics & Informatics
    • /
    • v.8 no.3
    • /
    • pp.138-141
    • /
    • 2010
  • Together with single nucleotide polymorphism (SNP), copy number variations (CNV) are recognized to be the major component of human genetic diversity and used as a genetic marker in many disease association studies. Affymetrix Genome-wide SNP 5.0 is one of the commonly used SNP array platforms for SNP-GWAS as well as CNV analysis. However, there has been no report that validated the accuracy and reproducibility of CNVs identified by Affymetrix SNP array 5.0. In this study, we compared the characteristics of CNVs from the same set of genomic DNAs detected by three different array platforms; Affymetrix SNP array 5.0, Agilent 2X244K CNV array and NimbleGen 2.1M CNV array. In our analysis, Affymetrix SNP array 5.0 seems to detect CNVs in a reliable manner, which can be applied for association studies. However, for the purpose of defining CNVs in detail, Affymetrix Genome-wide SNP 5.0 might be relatively less ideal than NimbleGen 2.1M CNV array and Agilent 2X244K CNV array, which outperform Affymetrix array for defining the small-sized single copy variants. This result will help researchers to select a suitable array platform for CNV analysis.