DOI QR코드

DOI QR Code

The complete mitochondrial genome of Arabidopsis thaliana (Brassicaceae) isolated in Korea

  • PARK, Jongsun (InfoBoss Inc. and InfoBoss Research Center) ;
  • XI, Hong (InfoBoss Inc. and InfoBoss Research Center) ;
  • KIM, Yongsung (Honam National Institute of Biological Resources)
  • Received : 2021.05.07
  • Accepted : 2021.06.05
  • Published : 2021.06.30

Abstract

Arabidopsis thaliana (L.) Heynh. is a small plant species that serves as a model organism of plant biology and genetics. Here, we present the first complete mitochondrial genome of Korean A. thaliana natural isolate (named as 180404IB4), which is 368,875 bp long and contains 58 genes (33 protein-coding genes, 22 tRNAs, and three rRNAs), with a GC ratio of 44.8%. Sixty-four single-nucleotide polymorphisms and 11 insertion and deletion regions (1,089 bp in length) are identified against the Col-0 ecotype, showing one large insertion of 1,069 bp without structural variation. Phylogenetic trees constructed from 30 conserved genes indicate that the 180404IB4 mitochondrial genome is clustered with Col-0 and three East Asian ecotypes.

Keywords

Acknowledgement

This work was supported by InfoBoss Research Grant (IBG-0023).

References

  1. Choi, S. S.,V. A. Bakalin, W. Kwon and J. Park. 2021a. The complete mitochondrial genome of Douinia plicata (Lindb.) Konstant. et. Vilnet (Scapaniaceae, Jungermanniales). Mitochondrial DNA Part B 6: 789-791. https://doi.org/10.1080/23802359.2021.1882901
  2. Choi, S. S., J. Min, W. Kwon and J. Park. 2021b. The complete mitochondrial genome of Scapania ampliata Steph., 1897 (Scapaniaceae, Jungermanniales). Mitochondrial DNA Part B Resources 6: 686-688. https://doi.org/10.1080/23802359.2021.1882892
  3. Darriba, D., G. L. Taboada, R. Doallo and D. Posada. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods 9:772.
  4. Davila, J. I., M. P. Arrieta-Montiel, Y. Wamboldt, J. Cao, J. Hagmann, V. Shedge, Y.-Z. Xu, D. Weigel and S. A. Mackenzie. 2011. Double-strand break repair processes drive evolution of the mitochondrial genome in Arabidopsis. BMC Biology 9: 64. https://doi.org/10.1186/1741-7007-9-64
  5. Gan, X., O. Stegle, J. Behr, J. G. Steffen, P. Drewe, K. L. Hildebrand, R. Lyngsoe, S. J. Schultheiss, E. J. Osborne, V. T. Sreedharan, A. Kahles, R. Bohnert, G. Jean, P. Derwent, P. Kersey, E. J. Belfield, N. P. Harberd, E. Kemen, C. Toomajian, P. X. Kover, R. M. Clark, G. Ratsch and R. Mott. 2011. Multiple reference genomes and transcriptomes for Arabidopsis thaliana. Nature 477: 419-423. https://doi.org/10.1038/nature10414
  6. Ge, D., J. Dong, L. Guo, M. Yan, X. Zhao and Z. Yuan. 2020. The complete mitochondrial genome sequence of cultivated apple (Malus domestica cv.'Yantai Fuji 8'). Mitochondrial DNA Part B Resources 5: 1317-1318. https://doi.org/10.1080/23802359.2020.1733447
  7. Goremykin, V. V., P. J. Lockhart, R. Viola and R. Velasco. 2012. The mitochondrial genome of Malus domestica and the import-driven hypothesis of mitochondrial genome expansion in seed plants. The Plant Journal 71: 615-626. https://doi.org/10.1111/j.1365-313X.2012.05014.x
  8. Greiner, S., P. Lehwark and R. Bock. 2019. OrganellarGenome-DRAW (OGDRAW) version 1.3. 1: expanded toolkit for the graphical visualization of organellar genomes. Nucleic Acids Research 47: W59-W64. https://doi.org/10.1093/nar/gkz238
  9. Hoffmann, M. H. 2002. Biogeography of Arabidopsis thaliana (L.) Heynh. (Brassicaceae). Journal of Biogeography 29: 125-134. https://doi.org/10.1046/j.1365-2699.2002.00647.x
  10. Huelsenbeck, J. P. and F. Ronquist 2001. MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755. https://doi.org/10.1093/bioinformatics/17.8.754
  11. Katoh, K. and D. M. Standley 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Molecular Biology and Evolution 30: 772-780. https://doi.org/10.1093/molbev/mst010
  12. Kim, M., H. Xi and J. Park. 2021. Genome-wide comparative analyses of GATA transcription factors among 19 Arabidopsis ecotype genomes: Intraspecific characteristics of GATA transcription factors. PLoS One 16: e0252181. https://doi.org/10.1371/journal.pone.0252181
  13. Kumar, S., G. Stecher, M. Li, C. Knyaz and K. Tamura. 2018. MEGA X: Molecular Evolutionary Genetics Analysis across computing platforms. Molecular Biology and Evolution 35: 1547-1549. https://doi.org/10.1093/molbev/msy096
  14. Kwon, W., Y. Kim and J. Park. 2019a. The complete mitochondrial genome of Dumortiera hirsuta (Sw.) Nees (Dumortieraceae, Marchantiophyta). Mitochondrial DNA Part B Resources 4: 1586-1587. https://doi.org/10.1080/23802359.2019.1596767
  15. Kwon, W., Y. Kim and J. Park. 2019b. The complete mitochondrial genome of Korean Marchantia polymorpha subsp. ruderalis Bischl. & Boisselier: inverted repeats on mitochondrial genome between Korean and Japanese isolates. Mitochondrial DNA Part B Resources 4: 769-770. https://doi.org/10.1080/23802359.2019.1565975
  16. Li, H. 2013. Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. Preprint at: https://arxiv.org/abs/1303.3997 (2013).
  17. Li, H., B. Handsaker, A. Wysoker, T. Fennell, J. Ruan, N. Homer, G. Marth, G. Abecasis, R. Durbin and 1000 Genome Project Processing Subgroup. 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25: 2078-2079. https://doi.org/10.1093/bioinformatics/btp352
  18. Mandel, M. A. and M. F. Yanofsky. 1995. A gene triggering flower formation in Arabidopsis. Nature 377: 522-524. https://doi.org/10.1038/377522a0
  19. Masutani, B., S.-I. Arimura and S. Morishita. 2021. Investigating the mitochondrial genomic landscape of Arabidopsis thaliana by long-read sequencing. PLoS Computational Biology 17: e1008597. https://doi.org/10.1371/journal.pcbi.1008597
  20. Min, J., W. Kwon, H. Xi and J. Park. 2020. The complete mitochondrial genome of Riccia fluitans L. (Ricciaceae, Marchantiophyta): Investigation of intraspecific variations on mitochondrial genomes of R. fluitans. Mitochondrial DNA Part B Resources 5: 1220-1222. https://doi.org/10.1080/23802359.2020.1730728
  21. Park, J., Y. Kim and M. Kwon. 2019a. The complete mitochondrial genome of tulip tree, Liriodendron tulifipera L. (Magnoliaceae): Intra-species variations on mitochondrial genome. Mitochondrial DNA Part B Resources 4: 1308-1309. https://doi.org/10.1080/23802359.2019.1591242
  22. Park, J., Y. Kim and K. Lee. 2019b. The complete chloroplast genome of Korean mock strawberry, Duchesnea chrysantha (Zoll. & Moritzi) Miq. (Rosoideae). Mitochondrial DNA Part B Resources 4: 864-865. https://doi.org/10.1080/23802359.2019.1573114
  23. Park, J., Y. Kim, H. Xi and K.-I Heo. 2019c. The complete chloroplast genome of ornamental coffee tree, Coffea arabica L. (Rubiaceae). Mitochondrial DNA Part B Resources 4: 1059-1060. https://doi.org/10.1080/23802359.2019.1584060
  24. Park, J., Y. Kim, H. Xi, W. Kwon and M. Kwon. 2019d. The complete chloroplast and mitochondrial genomes of Hyunsasi tree, Populus alba x Populus glandulosa (Salicaceae). Mitochondrial DNA Part B Resources 4: 2521-2522. https://doi.org/10.1080/23802359.2019.1598788
  25. Park, J., J. Min, Y. Kim and Y. Chung. 2021. The comparative analyses of six complete chloroplast genomes of morphologically diverse Chenopodium album L. (Amaranthaceae) collected in Korea. International Journal of Genomics 2021: 6643444.
  26. Park, J., H. Xi and Y. Kim. 2020a. The complete chloroplast genome of Arabidopsis thaliana isolated in Korea (Brassicaceae): an investigation of intraspecific variations of the chloroplast genome of Korean A. thaliana. International Journal of Genomics 2020: 3236461.
  27. Park, J., H. Xi, Y. Kim, S. Nam and K.-I Heo. 2020b. The complete mitochondrial genome of new species candidate of Rosa rugosa (Rosaceae). Mitochondrial DNA Part B Resources 5: 3435-3437. https://doi.org/10.1080/23802359.2020.1821820
  28. Park, J., H. Xi and S.-H. Oh. 2020c. Comparative chloroplast genomics and phylogenetic analysis of the Viburnum dilatatum complex (Adoxaceae) in Korea. Korean Journal of Plant Taxonomy 50: 8-16. https://doi.org/10.11110/kjpt.2020.50.1.8
  29. Rensink, W. A. and C. R. Buell. 2004. Arabidopsis to rice: applying knowledge from a weed to enhance our understanding of a crop species. Plant Physiology 135: 622-629. https://doi.org/10.1104/pp.104.040170
  30. Schmitz, R. J., M. D. Schultz, M. A. Urich, J. R. Nery, M. Pelizzola, O. Libiger, A. Alix, R. B. McCosh, H. Chen, N. J. Schork and J. R. Ecker. 2013. Patterns of population epigenomic diversity. Nature 495: 193-198. https://doi.org/10.1038/nature11968
  31. Sloan, D. B., Z. Wu and J. Sharbrough. 2018. Correction of persistent errors in Arabidopsis reference mitochondrial genomes. The Plant Cell 30: 525-527. https://doi.org/10.1105/tpc.18.00024
  32. The 1001 Genomes Consortium. 2016. 1,135 genomes reveal the global pattern of polymorphism in Arabidopsis thaliana. Cell 166: 481-491. https://doi.org/10.1016/j.cell.2016.05.063
  33. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408: 796-815. https://doi.org/10.1038/35048692
  34. Unseld, M., P. Marienfeld, P. Brandt and A. Brennicke. 1997. The mitochondrial genome of Arabidopsis thaliana contains 57 genes in 366,924 nucleotides. Nature Genetics 15: 57-61. https://doi.org/10.1038/ng0197-57
  35. Xu, Y. and C. Bi. 2018. The complete mitochondrial genome sequence of an alpine plant Arabis alpina. Mitochondrial DNA Part B Resources 3: 725-727. https://doi.org/10.1080/23802359.2018.1483758
  36. Zerbino, D. R. and E. Birney. 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Research 18: 821-829. https://doi.org/10.1101/gr.074492.107
  37. Zhao, Q.-Y., Y. Wang, Y.-M. Kong, D. Luo, X. Li and P. Hao. 2011. Optimizing de novo transcriptome assembly from shortread RNA-Seq data: a comparative study. BMC Bioinformatics 12 Suppl 14: S2.
  38. Zou, Y.-P., X.-H. Hou, Q. Wu, J.-F. Chen, Z.-W. Li, T.-S. Han, X.- M. Niu, L. Yang, Y.-C. Xu, J. Zhang, F.-M. Zhang, D. Tan, Z. Tian, H. Gu and Y.-L. Guo. 2017. Adaptation of Arabidopsis thaliana to the Yangtze River basin. Genome Biology 18: 239. https://doi.org/10.1186/s13059-017-1378-9

Cited by

  1. Genome-wide comparative analyses of GATA transcription factors among seven Populus genomes vol.11, pp.1, 2021, https://doi.org/10.1038/s41598-021-95940-5