• Title/Summary/Keyword: Genome Variation

Search Result 286, Processing Time 0.02 seconds

The genomic landscape associated with resistance to aromatase inhibitors in breast cancer

  • Kirithika Sadasivam;Jeevitha Priya Manoharan;Hema Palanisamy;Subramanian Vidyalakshmi
    • Genomics & Informatics
    • /
    • v.21 no.2
    • /
    • pp.20.1-20.10
    • /
    • 2023
  • Aromatase inhibitors (AI) are drugs that are widely used in treating estrogen receptor (ER)-positive breast cancer patients. Drug resistance is a major obstacle to aromatase inhibition therapy. There are diverse reasons behind acquired AI resistance. This study aims at identifying the plausible cause of acquired AI resistance in patients administered with non-steroidal AIs (anastrozole and letrozole). We used genomic, transcriptomic, epigenetic, and mutation data of breast invasive carcinoma from The Cancer Genomic Atlas database. The data was then separated into sensitive and resistant sets based on patients' responsiveness to the non-steroidal AIs. A sensitive set of 150 patients and a resistant set of 172 patients were included for the study. These data were collectively analyzed to probe into the factors that might be responsible for AI resistance. We identified 17 differentially regulated genes (DEGs) among the two groups. Then, methylation, mutation, miRNA, copy number variation, and pathway analyses were performed for these DEGs. The top mutated genes (FGFR3, CDKN2A, RNF208, MAPK4, MAPK15, HSD3B1, CRYBB2, CDC20B, TP53TG5, and MAPK8IP3) were predicted. We also identified a key miRNA - hsa-mir-1264 regulating the expression of CDC20B. Pathway analysis revealed HSD3B1 to be involved in estrogen biosynthesis. This study reveals the involvement of key genes that might be associated with the development of AI resistance in ER-positive breast cancers and hence may act as a potential prognostic and diagnostic biomarker for these patients.

A phylogenetic analysis of the Korean endemic species Paraphlomis koreana (Lamiaceae) inferred from nuclear and plastid DNA sequences

  • Eun-Kyeong HAN;Jung-Hyun KIM;Jin-Seok KIM;Chang Woo HYUN;Dong Chan SON;Gyu Young CHUNG;Amarsanaa GANTSETSEG;Jung-Hyun LEE;In-Su CHOI
    • Korean Journal of Plant Taxonomy
    • /
    • v.53 no.2
    • /
    • pp.157-165
    • /
    • 2023
  • Paraphlomis koreana (Lamiaceae) was newly named and added to Korean flora in 2014. Paraphlomis belongs to the tribe Paraphlomideae, along with Ajugoides and Matsumurella. However, a recent study has suggested that P. koreana is morphologically similar to Matsumurella chinensis, making them difficult to distinguish from each other. Therefore, we aimed to examine the phylogenetic placement of P. koreana within the tribe and compare its genetic relationship with M. chinensis. We sequenced an additional complete plastid genome for an individual of P. koreana and generated sequences of nuclear ribosomal (nr) DNA regions of internal and external transcribed spacers (ITS and ETS) for two individuals of P. koreana. Maximum likelihood analyses based on two nrDNA regions (ITS and ETS) and four plastid DNA markers (rpl16 intron, rpl32-trnL, rps16 intron, and trnL-F) covering 13 Paraphlomis species and M. chinensis were conducted. Phylogenetic analyses concordantly supported that P. koreana forms a monophyletic group with M. chinensis. Moreover, our study revealed that P. koreana includes nrDNA sequences of M. chinensis as minor intra-individual variants, suggesting that the genetic divergence between the two taxa is incomplete and may represent intraspecific variation rather than distinct species. In conclusion, our findings suggest that the independent species status of P. koreana within Paraphlomis should be reconsidered.

Molecular Characterization of Silicon (Si) Transporter Genes, Insights into Si-acquisition Status, Plant Growth, Development, and Yield in Alfalfa

  • Md Atikur Rahman;Sang-Hoon Lee;Yowook Song;Hyung Soo Park;Jae Hoon Woo;Bo Ram Choi;Ki-Won Lee
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.43 no.3
    • /
    • pp.168-176
    • /
    • 2023
  • Silicon (Si) has the potential to improve plant growth and stress tolerance. The study aimed to explore Si-involving plant responses and molecular characterization of different Si-responsive genes in alfalfa. In this study, the exogenous supplementation of Si enhanced plant growth, and biomass yield. Si-acquisition in alfalfa root and shoot was higher in Si-supplemented compared to silicon deficient (-Si) plants, implying Si-acquisition has beneficial on alfalfa plants. As a consequence, the quantum efficiency of photosystem II (Fv/Fm) was significantly increased in silicon-sufficient (+Si) plants. The quantitative gene expression analysis exhibited a significant upregulation of the Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes in alfalfa roots, while BOR1, BOR4, NIP2, and NIP3 showed no significant variation in their expression. The MEME results further noticed the association of four motifs related to the major intrinsic protein (MIP). The interaction analysis revealed that NIP5;1 and Lsi1 showed a shared gene network with NIP2, BOR1, and BOR4, and Lsi2, Lsi3 and NIP3-1, respectively. These results suggest that members of the major intrinsic proteins (MIPs) family especially Lsi1, Lsi2, Lsi3, NIP5;1, and NIP6;1 genes helped to pass water and other neutral solutes through the cell membrane and those played significant roles in Si uptake and transport in plants. Together, these insights might be useful for alfalfa breeding and genome editing approaches for alfalfa improvement.

Transcriptome Analysis Reveals the Putative Polyketide Synthase Gene Involved in Hispidin Biosynthesis in Sanghuangporus sanghuang

  • Jiansheng Wei;Liangyan Liu;Xiaolong Yuan;Dong Wang;Xinyue Wang;Wei Bi;Yan Yang;Yi Wang
    • Mycobiology
    • /
    • v.51 no.5
    • /
    • pp.360-371
    • /
    • 2023
  • Hispidin is an important styrylpyrone produced by Sanghuangporus sanghuang. To analyze hispidin biosynthesis in S. sanghuang, the transcriptomes of hispidin-producing and non-producing S. sanghuang were determined by Illumina sequencing. Five PKSs were identified using genome annotation. Comparative analysis with the reference transcriptome showed that two PKSs (ShPKS3 and ShPKS4) had low expression levels in four types of media. The gene expression pattern of only ShPKS1 was consistent with the yield variation of hispidin. The combined analyses of gene expression with qPCR and hispidin detection by liquid chromatography-mass spectrometry coupled with ion-trap and time-of-flight technologies (LCMS-IT-TOF) showed that ShPKS1 was involved in hispidin biosynthesis in S. sanghuang. ShPKS1 is a partially reducing PKS gene with extra AMP and ACP domains before the KS domain. The domain architecture of ShPKS1 was AMP-ACP-KS-AT-DH-KR-ACP-ACP. Phylogenetic analysis shows that ShPKS1 and other PKS genes from Hymenochaetaceae form a unique monophyletic clade closely related to the clade containing Agaricales hispidin synthase. Taken together, our data indicate that ShPKS1 is a novel PKS of S. sanghuang involved in hispidin biosynthesis.

Novel rearrangements in the mitochondrial genomes of the Ceramiales (Rhodophyta) and evolutionary implications

  • Min Ho Seo;Shin Chan Kang;Kyeong Mi Kim;Min Seok Kwak;Jihoon Jo;Han-Gu Choi;Ga Hun Boo;Hwan Su Yoon
    • ALGAE
    • /
    • v.38 no.4
    • /
    • pp.253-264
    • /
    • 2023
  • The Ceramiales is the most diverse and species-rich group (2,669 spp.) of red algae, and it is widely distributed from tropical to polar oceans. Mitochondrial genomes (mitogenomes) and other genes have contributed to our knowledge regarding the classification and phylogeny of this diverse red algal group; however, the mitogenome architecture remains understudied. Here, we compared 42 mitogenomes, including 19 newly generated in this study, to expand our knowledge. The number of genes in mitogenome varied from 43 to 68 due to gene duplication. The mitogenome architecture was also variable, categorized into four types (A-D): type A = ancestral type with a basic composition; type B = those with inverse transpositions; type C = those with inverted duplications; and type D = those with both inversion and duplication. The palindromic and inverted repeats were consistently found in flanking regions of the rearrangement, especially near the cob and nad6 genes. The three rearranged mitogenome architectures (types B, C, D) are the first report of these in red algae. Phylogenetic analyses of 23 protein-coding genes supported the current familial classification of the Ceramiales, implying that the diversity of mitogenome architecture preceded the phylogenetic relationships. Our study suggests that palindromic and inverted repeats may drive mitogenome architectural variation.

Phylogenic Study of Genus Asarum (Aristolochiaceae) in Korea by trnL-trnT Region (trnL-trnT 부위에 의한 한국 족도리풀속 식물종의 계통분류학적 연구)

  • Lee, Byeong-Ryong;Kim, Seon-Hoan;Huh, Man-Kyu
    • Journal of Life Science
    • /
    • v.20 no.11
    • /
    • pp.1697-1703
    • /
    • 2010
  • Asarum consists of low-growing herbs and is a genus in the Aristolochiaceae family with species found in the north temperate zones with most species in Asia. We evaluated the nine taxa with the trnL - trnT region of the chloroplast genome to estimate phenotypic relationships within genus Asarum in Korea. Alignment of the DNA sequences required the addition of numerous gaps. Sequence variation within the Asarum was mostly due to nucleotide inserts/deletions, although several indels and inserts were found. Another source of sequence divergence was length variation due to stretches of short repeats that occur at the trnL - trnT region in all the Asarum. A + T content for nine Korean species of genus Asarum ranged between 74.7% and 78.3%. These values were higher than those for the angiosperm alignments of the total trnL and trnT region (64.5~67.1%). Within genus Asarum, A. patens was strikingly different from the others in the three phylogenetic analyses (MP, ML, and NJ). However, some internal nodes were poorly supported. Within Korean Asarum, four species were unsolved portions. Possible reasons for the striking non-congruence between the previous morphological traits and the trnL - trnT based on phylogeny were discussed.

Comparative transcriptome and metabolome analyses of four Panax species explore the dynamics of metabolite biosynthesis

  • Hyunjin, Koo;Yun Sun, Lee;Van Binh, Nguyen;Vo Ngoc Linh, Giang;Hyun Jo, Koo;Hyun-Seung, Park;Padmanaban, Mohanan;Young Hun, Song;Byeol, Ryu;Kyo Bin, Kang;Sang Hyun, Sung;Tae-Jin, Yang
    • Journal of Ginseng Research
    • /
    • v.47 no.1
    • /
    • pp.44-53
    • /
    • 2023
  • Background: The genus Panax in the Araliaceae family has been used as traditional medicinal plants worldwide and is known to biosynthesize ginsenosides and phytosterols. However, genetic variation between Panax species has influenced their biosynthetic pathways is not fully understood. Methods: Simultaneous analysis of transcriptomes and metabolomes obtained from adventitious roots of two tetraploid species (Panax ginseng and P. quinquefolius) and two diploid species (P. notoginseng and P. vietnamensis) revealed the diversity of their metabolites and related gene expression profiles. Results: The transcriptome analysis showed that 2,3-OXIDOSQUALENE CYCLASEs (OSCs) involved in phytosterol biosynthesis are upregulated in the diploid species, while the expression of OSCs contributing to ginsenoside biosynthesis is higher in the tetraploid species. In agreement with these results, the contents of dammarenediol-type ginsenosides were higher in the tetraploid species relative to the diploid species. Conclusion: These results suggest that a whole-genome duplication event has influenced the triterpene biosynthesis pathway in tetraploid Panax species during their evolution or ecological adaptation. This study provides a basis for further efforts to explore the genetic variation of the Panax genus.

Cis-acting Replication Element Variation of the Foot-and-mouth Disease Virus is Associated with the Determination of Host Susceptibility (구제역바이러스의 숙주 특이성 결정에 연관되어있는 구제역바이러스 cis-acting replication element 변이 분석 연구)

  • Kang, Hyo Rin;Seong, Mi So;Ku, Bok Kyung;Cheong, JaeHun
    • Journal of Life Science
    • /
    • v.30 no.11
    • /
    • pp.947-955
    • /
    • 2020
  • The foot-and-mouth disease virus (FMDV), a member of the Aphthovirus genus in the Picornaviridae family, affects wild and domesticated ruminants and pigs. During replication of the FMDV RNA (ribonucleic acid) genome, FMDV-encoding RNA polymerase 3D acts in a highly location-specific manner. This suggests that specific RNA structures recognized by 3D polymerase within non-coding regions of the FMDV genome assist with binding during replication. One such region is the cis-acting replication element (CRE), which functions as a template for RNA replication. The FMDV CRE adopts a stem-loop conformation with an extended duplex stem, supporting a novel 15-17 nucleotide loop that derives stability from base-stacking interactions, with the exact RNA nucleotide sequence of the CRE producing different RNA secondary structures. Here, we show that CRE sequences of FMDVs isolated in Korea from 2010 to 2017 exhibit A and O genotypes. Interestingly, variations in the RNA secondary structure of the Korean FMDVs are consistent with the phylogenetic relationships between these viruses and reveal the specificity of FMDV infections for particular host species. Therefore, we conclude that each genetic clade of Korean FMDV is characterized by a unique functional CRE and that the evolutionary success of new genetic lineages may be associated with the invention of a novel CRE motif. Therefore, we propose that the specific RNA structure of a CRE is an additional criterion for FMDV classification dependent on the host species. These findings will help correctly analyze CRE sequences and indicate the specificity of host species for future FMDV epidemics.

Analysis of Mutant Chinese Cabbage Plants Using Gene Tagging System (Gene Tagging System을 이용한 돌연변이 배추의 분석)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Lim, Ki-Byung;Hwang, Yoon-Jung;Woo, Eun-Taek;Kim, Jung-Sun;Park, Beom-Seok;Lee, Youn-Hyung;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.28 no.3
    • /
    • pp.442-448
    • /
    • 2010
  • The objectives of this study were to analyze mutant lines of Chinese cabbage ($Brassica$ $rapa$ ssp. $pekinensis$) using gene tagging system (plasmid rescue and inverse polymerase chain reaction) and to observe the phenotypic characteristics. Insertional mutants were derived by transferring DNA (T-DNA) of $Agrobacterium$ for functional genomics study in Chinese cabbage. The hypocotyls of Chinese cabbage 'Seoul' were used to obtain transgenic plants with $Agrobacterium$ $tumefaciens$ harboring pRCV2 vector. To tag T-DNA from the Chinese cabbage genomic DNA, plasmid rescue and inverse PCR were applied for multiple copies and single copy insertional mutants. These techniques were successfully conducted to Chinese cabbage plant with high efficiency, and as a result, T-DNA of pRCV2 vector showed distinct various integration patterns in the transgenic plant genome. The polyploidy level analysis showed the change in phenotypic characteristics of 13 mutant lines was not due to variation in somatic chromosome number. Compared with wild type, the $T_1$ progenies showed varied phenotypes, such as decreased stamen numbers, larger or smaller flowers, upright growth habit, hairless leaves, chlorosis symptoms, narrow leaves, and deeply serrated leaves. The polyploidy level analysis showed the change in phenotypic characteristics of 13 mutant lines was not due to variation in somatic chromosome number. To tag T-DNA from the Chinese cabbage genomic DNA, plasmid rescue and inverse PCR were applied for multiple copies and single copy insertional mutants. Mutants that showed distinct phenotypic difference compared to wild type with 1 copy of T-DNA by Southern blot analysis, and with 2n = 20 of chromosome number were selected. These selected mutant lines were sequenced flanking DNA, mapped genomic loci, and the genome information of the lines is being recorded in specially developed database.

Genetic Identification and Phylogenic Analysis of New Varieties and 149 Korean Cultivars using 27 InDel Markers Selected from Dense Variation Blocks in Soybean (Glycine max (L.) Merrill) (변이밀집영역 유래 27개 InDel 마커를 이용한 콩(Glycine max (L.) Merrill) 신품종 판별 및 국내 149 품종과 유연관계 분석)

  • Chun, JaeBuhm;Jin, Mina;Jeong, Namhee;Cho, Chuloh;Seo, Mi-Suk;Choi, Man-Soo;Kim, Dool-Yi;Sohn, Hwang-Bae;Kim, Yul-Ho
    • Korean Journal of Plant Resources
    • /
    • v.32 no.5
    • /
    • pp.519-542
    • /
    • 2019
  • Twenty soybean cultivars developed recently were assessed using 27 insertion and deletion (InDel) markers derived from dense variation blocks (dVBs) of soybean genome. The objective of this study is to identify the distinctness and genetic relationships among a total of 169 soybean accessions including new cultivars. The genetic homology between 149 accessions in the soybean barcode system and 20 new cultivars was 61.3% on average with the range from 25.9% to 96.3%, demonstrating the versatile application of these markers for cultivars identification. The phylogenic analysis revealed four subgroups related to their usage. The 80% of cultivars for vegetable and early maturity and the 65.9% of cultivars for bean sprouts were clustered in subgroup I-2 and II-2, respectively, indicating of the limited gene pools of their crossing parents in breeding. On the other hands, the cultivars for soy sauce and tofu with considerable gene flow by genome reshuffling were distributed evenly to several subgroups, I-1 (44.4%), I-2 (26.4%) and II-2 (23.6%). We believe that the 27 InDel markers specific to dVBs can be used not only for cultivar identification and genetic diversity, but also in breeding purposes such as introduction of genetic resources and selection of breeding lines with target traits.