DOI QR코드

DOI QR Code

The genomic landscape associated with resistance to aromatase inhibitors in breast cancer

  • Received : 2023.02.13
  • Accepted : 2023.05.17
  • Published : 2023.06.30

Abstract

Aromatase inhibitors (AI) are drugs that are widely used in treating estrogen receptor (ER)-positive breast cancer patients. Drug resistance is a major obstacle to aromatase inhibition therapy. There are diverse reasons behind acquired AI resistance. This study aims at identifying the plausible cause of acquired AI resistance in patients administered with non-steroidal AIs (anastrozole and letrozole). We used genomic, transcriptomic, epigenetic, and mutation data of breast invasive carcinoma from The Cancer Genomic Atlas database. The data was then separated into sensitive and resistant sets based on patients' responsiveness to the non-steroidal AIs. A sensitive set of 150 patients and a resistant set of 172 patients were included for the study. These data were collectively analyzed to probe into the factors that might be responsible for AI resistance. We identified 17 differentially regulated genes (DEGs) among the two groups. Then, methylation, mutation, miRNA, copy number variation, and pathway analyses were performed for these DEGs. The top mutated genes (FGFR3, CDKN2A, RNF208, MAPK4, MAPK15, HSD3B1, CRYBB2, CDC20B, TP53TG5, and MAPK8IP3) were predicted. We also identified a key miRNA - hsa-mir-1264 regulating the expression of CDC20B. Pathway analysis revealed HSD3B1 to be involved in estrogen biosynthesis. This study reveals the involvement of key genes that might be associated with the development of AI resistance in ER-positive breast cancers and hence may act as a potential prognostic and diagnostic biomarker for these patients.

Keywords

Acknowledgement

We thank the management of PSG College of Technology, Coimbatore for their support and infrastructural facilities provided to carry out this work.

References

  1. Breast cancer. Geneva: World Health Organization, 2021. Accessed 2021 Nov 17. Available from https://www.who.int/newsroom/fact-sheets/detail/breast-cancer. 
  2. Chen S, Masri S, Wang X, Phung S, Yuan YC, Wu X. What do we know about the mechanisms of aromatase inhibitor resistance? J Steroid Biochem Mol Biol 2006;102:232-240. https://doi.org/10.1016/j.jsbmb.2006.09.012
  3. Surakasula A, Nagarjunapu GC, Raghavaiah KV. A comparative study of pre- and post-menopausal breast cancer: risk factors, presentation, characteristics and management. J Res Pharm Pract 2014;3:12-18. https://doi.org/10.4103/2279-042X.132704
  4. Higgins MJ, Baselga J. Targeted therapies for breast cancer. J Clin Invest 2011;121:3797-3803.  https://doi.org/10.1172/JCI57152
  5. Chumsri S, Howes T, Bao T, Sabnis G, Brodie A. Aromatase, aromatase inhibitors, and breast cancer. J Steroid Biochem Mol Biol 2011;125:13-22. https://doi.org/10.1016/j.jsbmb.2011.02.001
  6. Altundag K, Ibrahim NK. Aromatase inhibitors in breast cancer: an overview. Oncologist 2006;11:553-562. https://doi.org/10.1634/theoncologist.11-6-553
  7. Brodie A. Aromatase inhibitor development and hormone therapy: a perspective. Semin Oncol 2003;30:12-22. https://doi.org/10.1016/S0093-7754(03)00303-8
  8. Ratre P, Mishra K, Dubey A, Vyas A, Jain A, Thareja S. Aromatase inhibitors for the treatment of breast cancer: a journey from the scratch. Anticancer Agents Med Chem 2020;20:1994-2004. https://doi.org/10.2174/1871520620666200627204105
  9. Bickenbach KA, Jaskowiak N. Aromatase inhibitors: an overview for surgeons. J Am Coll Surg 2006;203:376-389. https://doi.org/10.1016/j.jamcollsurg.2006.05.291
  10. Avendano C. Anticancer drugs that modulate hormone action. In: Medicinal Chemistry of Anticancer Drugs (Avendano C, Menendez JC, eds.). Amsterdam: Elsevier Science, 2015. pp. 81-131.
  11. Santen RJ, Brodie H, Simpson ER, Siiteri PK, Brodie A. History of aromatase: saga of an important biological mediator and therapeutic target. Endocr Rev 2009;30:343-375. https://doi.org/10.1210/er.2008-0016
  12. Smith IE, Dowsett M. Aromatase inhibitors in breast cancer. N Engl J Med 2003;348:2431-2442. https://doi.org/10.1056/NEJMra023246
  13. Hong S, Didwania A, Olopade O, Ganschow P. The expanding use of third-generation aromatase inhibitors: what the general internist needs to know. J Gen Intern Med 2009;24 Suppl 2:S383-S388. https://doi.org/10.1007/s11606-009-1037-2
  14. Fabian CJ. The what, why and how of aromatase inhibitors: hormonal agents for treatment and prevention of breast cancer. Int J Clin Pract 2007;61:2051-2063. https://doi.org/10.1111/j.1742-1241.2007.01587.x
  15. Augusto TV, Correia-da-Silva G, Rodrigues CM, Teixeira N, Amaral C. Acquired resistance to aromatase inhibitors: where we stand! Endocr Relat Cancer 2018;25:R283-R301. https://doi.org/10.1530/ERC-17-0425
  16. Hamilton A, Volm M. Nonsteroidal and steroidal aromatase inhibitors in breast cancer. Oncology (Williston Park) 2001;15:965-972.
  17. Goss PE, Strasser K. Aromatase inhibitors in the treatment and prevention of breast cancer. J Clin Oncol 2001;19:881-894. https://doi.org/10.1200/JCO.2001.19.3.881
  18. Miller WR, Bartlett J, Brodie AM, Brueggemeier RW, di Salle E, Lonning PE, et al. Aromatase inhibitors: are there differences between steroidal and nonsteroidal aromatase inhibitors and do they matter? Oncologist 2008;13:829-837. https://doi.org/10.1634/theoncologist.2008-0055
  19. Geisler J. Differences between the non-steroidal aromatase inhibitors anastrozole and letrozole: of clinical importance? Br J Cancer 2011;104:1059-1066. https://doi.org/10.1038/bjc.2011.58
  20. Ma CX, Reinert T, Chmielewska I, Ellis MJ. Mechanisms of aromatase inhibitor resistance. Nat Rev Cancer 2015;15:261-275. https://doi.org/10.1038/nrc3920
  21. Hanamura T, Hayashi SI. Overcoming aromatase inhibitor resistance in breast cancer: possible mechanisms and clinical applications. Breast Cancer 2018;25:379-391. https://doi.org/10.1007/s12282-017-0772-1
  22. Chlebowski RT. Strategies to overcome endocrine therapy resistance in hormone receptor-positive advanced breast cancer. Clin Invest 2014;4:19-33. https://doi.org/10.4155/cli.13.123
  23. Silva TC, Colaprico A, Olsen C, D'Angelo F, Bontempi G, Ceccarelli M, et al. TCGA Workflow: analyze cancer genomics and epigenomics data using Bioconductor packages. F1000Res 2016;5:1542.
  24. Cardoso F, Costa A, Senkus E, Aapro M, Andre F, Barrios CH, et al. 3rd ESO-ESMO International Consensus Guidelines for Advanced Breast Cancer (ABC 3). Ann Oncol 2017;28:3111.
  25. TCGA-Assembler-2. San Francisco: GitHub, 2021. Accessed 2021 Nov 17. Available from: https://github.com/compgenome365/TCGA-Assembler-2.
  26. Rani A, Stebbing J, Giamas G, Murphy J. Endocrine resistance in hormone receptor positive breast cancer-from mechanism to therapy. Front Endocrinol (Lausanne) 2019;10:245.
  27. Brett JO, Spring LM, Bardia A, Wander SA. ESR1 mutation as an emerging clinical biomarker in metastatic hormone receptor-positive breast cancer. Breast Cancer Res 2021;23:85.
  28. Bartella V, De Marco P, Malaguarnera R, Belfiore A, Maggiolini M. New advances on the functional cross-talk between insulin-like growth factor-I and estrogen signaling in cancer. Cell Signal 2012;24:1515-1521. https://doi.org/10.1016/j.cellsig.2012.03.012
  29. Helsten T, Elkin S, Arthur E, Tomson BN, Carter J, Kurzrock R. The FGFR landscape in cancer: analysis of 4,853 tumors by next-generation sequencing. Clin Cancer Res 2016;22:259-267. https://doi.org/10.1158/1078-0432.CCR-14-3212
  30. Fox EM, Arteaga CL, Miller TW. Abrogating endocrine resistance by targeting ERalpha and PI3K in breast cancer. Front Oncol 2012;2:145.
  31. Chen D, Washbrook E, Sarwar N, Bates GJ, Pace PE, Thirunuvakkarasu V, et al. Phosphorylation of human estrogen receptor alpha at serine 118 by two distinct signal transduction pathways revealed by phosphorylation-specific antisera. Oncogene 2002;21:4921-4931. https://doi.org/10.1038/sj.onc.1205420
  32. Attar E, Bulun SE. Aromatase and other steroidogenic genes in endometriosis: translational aspects. Hum Reprod Update 2006;12:49-56. https://doi.org/10.1093/humupd/dmi034
  33. Kurokawa H, Lenferink AE, Simpson JF, Pisacane PI, Sliwkowski MX, Forbes JT, et al. Inhibition of HER2/neu (erbB-2) and mitogen-activated protein kinases enhances tamoxifen action against HER2-overexpressing, tamoxifen-resistant breast cancer cells. Cancer Res 2000;60:5887-5894.
  34. Dweep H, Sticht C, Pandey P, Gretz N. miRWalk--database: prediction of possible miRNA binding sites by "walking" the genes of three genomes. J Biomed Inform 2011;44:839-847. https://doi.org/10.1016/j.jbi.2011.05.002
  35. Wang X. miRDB: a microRNA target prediction and functional annotation database with a wiki interface. RNA 2008;14:1012-1017. https://doi.org/10.1261/rna.965408
  36. Agarwal V, Bell GW, Nam JW, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife 2015;4:e05005.
  37. von Mering C, Huynen M, Jaeggi D, Schmidt S, Bork P, Snel B. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res 2003;31:258-261. https://doi.org/10.1093/nar/gkg034
  38. Analysis Tool. Reactome, 2021. Accessed 2021 Nov 17. Available from: https://reactome.org/PathwayBrowser/#TOOL=AT.
  39. Stein LD. Using the Reactome database. Curr Protoc Bioinformatics 2004;Chapter:Unit 8.7.
  40. Alfarsi LH, Ansari RE, Craze ML, Toss MS, Masisi B, Ellis IO, et al. CDC20 expression in oestrogen receptor positive breast cancer predicts poor prognosis and lack of response to endocrine therapy. Breast Cancer Res Treat 2019;178:535-544. https://doi.org/10.1007/s10549-019-05420-8
  41. P14060.3BHS1_Human. UniProt, 2021. Accessed 2021 Nov 17. Available from: https://www.uniprot.org/uniprot/P14060.
  42. Naelitz BD, Sharifi N. Through the looking-glass: reevaluating DHEA metabolism through HSD3B1 genetics. Trends Endocrinol Metab 2020;31:680-690. https://doi.org/10.1016/j.tem.2020.05.006
  43. Hanamura T, Niwa T, Nishikawa S, Konno H, Gohno T, Tazawa C, et al. Androgen metabolite-dependent growth of hormone receptor-positive breast cancer as a possible aromatase inhibitor-resistance mechanism. Breast Cancer Res Treat 2013;139:731-740. https://doi.org/10.1007/s10549-013-2595-x
  44. Foulkes WD, Flanders TY, Pollock PM, Hayward NK. The CDKN2A (p16) gene and human cancer. Mol Med 1997;3:5-20. https://doi.org/10.1007/BF03401664
  45. Qiu Y, Lu G, Wu Y. Upregulated CDKN2A expression may be an independent protective factor in luminal-like breast cancer. Preprint at: https://assets.researchsquare.com/files/rs-29971/v1/6c4ff6f3-15de-49a6-909f-e4ddb3a3a444.pdf?c=1631841671 (2020).
  46. Aftab A, Shahzad S, Hussain HM, Khan R, Irum S, Tabassum S. CDKN2A/P16INK4A variants association with breast cancer and their in-silico analysis. Breast Cancer 2019;26:11-28. https://doi.org/10.1007/s12282-018-0894-0
  47. Sidransky D. Role of the p16 tumor suppressor gene in cancer. J Clin Oncol 1998;16:1197-1206. https://doi.org/10.1200/JCO.1998.16.3.1197
  48. Murakami T, Singh AS, Kiyuna T, Dry SM, Li Y, James AW, et al. Effective molecular targeting of CDK4/6 and IGF-1R in a rare FUS-ERG fusion CDKN2A-deletion doxorubicin-resistant Ewing's sarcoma patient-derived orthotopic xenograft (PDOX) nude-mouse model.Oncotarget 2016;7:47556-47564. https://doi.org/10.18632/oncotarget.9879
  49. Frisone D, Charrier M, Clement S, Christinat Y, Thouvenin L, Homicsko K, et al. Durable response to palbociclib and letrozole in ovarian cancer with CDKN2A loss. Cancer Biol Ther 2020;21:197-202. https://doi.org/10.1080/15384047.2019.1685291
  50. Shin I, Miller T, Arteaga CL. ErbB receptor signaling and therapeutic resistance to aromatase inhibitors. Clin Cancer Res 2006;12:1008s-1012s. https://doi.org/10.1158/1078-0432.CCR-05-2352
  51. Walker RR, Gallegos KM, Bratton MR, Lemieux KP, Zhang K, Wang G, et al. Acquisition of letrozole resistance through activation of the p38/MAPK signaling cascade. Anticancer Res 2021;41:583-599. https://doi.org/10.21873/anticanres.14810