• Title/Summary/Keyword: Genetic therapy

Search Result 339, Processing Time 0.026 seconds

In Vivo Target RNA Specificity of Trans-Splicing Phenomena by the Group I Intron

  • Song, Min-Sun;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.6 no.2
    • /
    • pp.84-86
    • /
    • 2008
  • The Tetrahymena group I intron has been shown to employ a trans-splicing reaction and has been modified to specifically target and replace human telomerase reverse transcriptase (hTERT) RNA with a suicide gene transcript, resulting in the induction of selective cytotoxicity in cancer cells that express the target RNA, in animal models as well as in cell cultures. In this study, we evaluated the target RNA specificity of trans-splicing phenomena by the group I intron in mice that were intraperitoneally inoculated with hTERT-expressing human cancer cells to validate the anti-cancer therapeutic applicability of the group I intron. To this end, an adenoviral vector that encoded for the hTERT-targeting group I intron was constructed and systemically injected into the animal. 5'-end RACE-PCR and sequencing analyses of the trans-spliced cDNA clones revealed that all of the analyzed products in the tumor tissue of the virus-infected mice resulted from reactions that were generated only with the targeted hTERT RNA. This study implies the in vivo target specificity of the trans-splicing group I intron and hence suggests that RNA replacement via a trans-splicing reaction by the group I intron is a potent anti-cancer genetic approach.

Concomitant occurrence of Turner syndrome and growth hormone deficiency

  • Yu, Jung;Shin, Ha Young;Lee, Chong Guk;Kim, Jae Hyun
    • Clinical and Experimental Pediatrics
    • /
    • v.59 no.sup1
    • /
    • pp.121-124
    • /
    • 2016
  • Turner syndrome (TS) is a genetic disorder in phenotypic females that has characteristic physical features and presents as partial or complete absence of the second sex chromosome. Growth hormone deficiency (GHD) is a condition caused by insufficient release of growth hormone from the pituitary gland. The concomitant occurrence of TS and GHD is rare and has not yet been reported in Korea. Here we report 2 cases of TS and GHD. In case 1, GHD was initially diagnosed. Karyotyping was performed because of the presence of the typical phenotype and poor response to growth hormone therapy, which revealed 45,X/45,X+mar. The patient showed increased growth velocity after the growth hormone dose was increased. In case 2, a growth hormone provocation test and chromosomal analysis were performed simultaneously because of decreased growth velocity and the typical TS phenotype, which showed GHD and a mosaic karyotype of 45,X/46,XX. The patient showed spontaneous pubertal development. In female patients with short stature, it is important to perform a throughout physical examination and test for hormonal and chromosomal abnormalities because diagnostic accuracy is important for treatment and prognosis.

Molecular Genetics and Diagnostic Approach of Mucolipidosis II/III

  • Sohn, Young Bae
    • Journal of mucopolysaccharidosis and rare diseases
    • /
    • v.2 no.1
    • /
    • pp.13-16
    • /
    • 2016
  • Mucolipidosis (ML) II/III are autosomal recessive diseases caused by deficiency of post-translational modification of lysosomal enzymes. The mannose-6-phosphate (M6P) residue in lysosomal enzymes synthesized by N-acetylglucosamine 1-phosphotransferase (GlcNAc-phosphotransferase) serves as recognition marker for trafficking in lysosomes. GlcNAc-phosphotransferase is encoded by GNPTAB and GNPTG. Mutations in GNPTAB cause severe ML II alpha/beta and the attenuated ML III alpha/beta. Whereas mutations in GNPTG cause the ML III gamma, the attenuated type of ML III variant. For the diagnostic approaches, increased urinary oligosaccharides excretion could be a screening test in clinically suspicious patients. To confirm the diagnosis, instead of measuring the activity of GlcNAc phosphotransferase, measuring the enzymatic activities of different lysosomal hydrolases are useful for diagnosis. The activities of several lysosomal hydrolases are decreased in fibroblasts but increased in serum of the patients. In addition, the sequence analysis of causative gene is warranted. Therefore, the confirmatory diagnosis requires a combination of clinical evaluation, biochemical and molecular genetic testing. ML II/III show complex disease manifestations with lysosomal storage as the prime cellular defect that initiates consequential organic dysfunctions. As there are no specific therapy for ML to date, understanding the molecular pathogenesis can contribute to develop new therapeutic approaches ultimately.

Radiofrequency Ablation and Excision of Multiple Cutaneous Lesions in Neurofibromatosis Type 1

  • Kim, Seong-Hun;Roh, Si-Gyun;Lee, Nae-Ho;Yang, Kyung-Moo
    • Archives of Plastic Surgery
    • /
    • v.40 no.1
    • /
    • pp.57-61
    • /
    • 2013
  • Background Von Recklinghausen disease or neurofibromatosis type 1 is an autosomal dominant genetic disorder of chromosome 17q11.2. The most common characteristic findings of NF 1 include multiple and recurrent cutaneous neurofibromas associated with psychosocial distress. Methods Sixteen patients (9 female, 7 male; average age, 31 years; range, 16 to 67 years) with multiple cutaneous neurofibromas between March 2010 and February 2012 were included in the study. All patients were treated with radiosurgical ablation and excision under general anesthesia. Results All 16 patients were satisfied with the results, when questioned directly during the outpatient department follow-up. The only complaint from a few patients was minimal scarring, but acceptable results were obtained in the end. Conclusions The radiofrequency procedure is almost bloodless and quick, creating a smaller necrotizing zone. Therefore, instead of employing the time consuming traditional surgery, such as laser therapy and electrosurgical excision, that produces uncertain results and can affect normal adjacent tissue, treatment of neurofibromas with radiofrequency ablation and excision can be an alternative choice of treatment for patients with a large number of neurofibromas.

Wilms tumor, aniridia, genitourinary anomalies, and mental retardation syndrome with deletion of chromosome 11p14.3p12

  • Seo, Go Hun;Kim, Yoon-Myung;Kim, Gu-Hwan;Seo, Eul-Ju;Choi, Jin Ho;Lee, Beom Hee;Yoo, Han-Wook
    • Journal of Genetic Medicine
    • /
    • v.15 no.1
    • /
    • pp.38-42
    • /
    • 2018
  • WAGR (Wilms tumor, aniridia, genitourinary anomalies, and mental retardation) syndrome is a rare contiguous gene deletion syndrome caused by deleting genes including WT1 and PAX6 genes in 11p13 region, which is characterized by Wilms tumor, aniridia, genitourinary abnormalities, and intellectual disability. We report the clinical and cytogenetic characteristics of one Korean patient with WAGR syndrome. The patient shows bilateral sporadic aniridia and genital anomalies at 2 months of age. A heterozygous 14.5 Mb interstitial deletion of 11p14.3p12 region was detected by array comparative genomic hybridization. At 2 years and 10 months of age, Wilms tumor is found through regularly abdominal ultrasonography and treated by chemotherapy, radiation therapy and surgery.

Specificity of Intracellular Trans-Splicing Reaction by hTERT-Targeting Group I Intron

  • Jung, Heung-Su;Kwon, Byung-Su;Lee, Seong-Wook
    • Genomics & Informatics
    • /
    • v.3 no.4
    • /
    • pp.172-174
    • /
    • 2005
  • Recent anti-cancer approaches have been based to target tumor-specifically associated and/or causative molecules such as RNAs or proteins. As this specifically targeted anti-cancer modulator, we have previously described a novel human cancer gene therapeutic agent that is Tetrahymena group I intron-based trans-splicing ribozyme which can reprogram and replace human telomerase reverse transcriptase (hTERT) RNA to selectively induce tumor-specific cytotoxicity in cancer cells expressing the target RNA. Moreover, the specific ribozyme has been shown to efficiently retard tumor tissues in xenograft mice which had been inoculated with hTERT-expressing human cancer cells. In this study, we assessed specificity of trans-splicing reaction in cells to evaluate the therapeutic feasibility of the specific ribozyme. In order to analyze the trans-spliced products by the specific ribozyme in hTERT-positive cells, RT, 5'-end RACE-PCR, and sequencing reactions of the spliced RNAs were employed. Then, whole analyzed products resulted from reactions only with the hTERT RNA. This study suggested that the developed ribozyme perform highly specific RNA replacement of the target RNA in cells, hence trans-splicing ribozyme will be one of specific agents for genetic approach to revert cancer.

Study on life span extension efficacy by Korean Red Ginseng

  • Lee, Joon-Hee;Choi, Sun-Hye;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.31 no.4
    • /
    • pp.210-216
    • /
    • 2007
  • The backbone structure of ginsenosides, active ingredients of Panax ginseng, is similar with that of sterol, especially cholesterol. Caenorhabditis elegans (c. elegans) is one of free living nematodes and is well-established animal model for biochemical and genetic studies. C. elegans cannot synthesize de novo cholesterol, although cholesterol is essential requirement for its growth and development. In the present study, we investigated the effects of Korean red ginseng total extract (KRGE), ginseng total saponins (GTS) on life span of C. elegans in cholesterol-deprived and -fed medium. Cholesterol deprivation caused damages on life span of worms throughout F1 to F3 generations. KRGE or GTS supplement to cholesterol-deprived medium restored the life span of worms as much as cholesterol alone-fed medium. In study to identify which ginsenosides are responsible for life span restoring effects of KRGE, we found that ginsenoside Rc supplement not only restored life span of worms grown in cholesterol-deprived medium but also prolonged life span of worms grown in cholesterol-fed medium. These results show a possibility that ginsenosides could be utilized by C. elegans as a sterol substitute and further indicate that ginsenoside Rc is the effective component of Korean red ginseng that prolongs the life span of C. elegans.

Implementation of Horse Gait and Riding Aids for Horseback Riding Robot Simulator HRB-1 (승마 로봇 시뮬레이터 HRB-1을 위한 말의 보행 및 부조의 구현)

  • Park, Yong-Sik;Seo, Kap-Ho;Oh, Seung-Sub;Park, Sung-Ho;Suh, Jin-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.3
    • /
    • pp.181-187
    • /
    • 2012
  • Horse riding is widely recognized as a valuable form of education, exercise and therapy. But, the injuries observed in horse riding range from very minor injuries to fatalities. In order to reduce these injuries, the effective horseback riding simulator is required. In this paper, we proposed the implementation method of horse gait and riding aids for horseback riding robot simulator HRB-1. For implementation of horse gait to robot simulator, we gathered and modified real motion data of horse. We obtained two main frequencies of each gait by frequency analysis, and then simple sinusoidal functions are acquired by genetic algorithm. In addition, we developed riding aids system including hands, leg, and seat aids. With the help of a developed robotic system, beginners can learn the skill of real horse riding without the risk of injury.

Intraovarian vascular enhancement via stromal injection of platelet-derived growth factors: Exploring subsequent oocyte chromosomal status and in vitro fertilization outcomes

  • Wood, Samuel H.;Sills, E. Scott
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.47 no.2
    • /
    • pp.94-100
    • /
    • 2020
  • The inverse correlation between maternal age and pregnancy rate represents a major challenge for reproductive endocrinology. The high embryo ploidy error rate in failed in vitro fertilization (IVF) cycles reflects genetic misfires accumulated by older oocytes over time. Despite the application of different follicular recruitment protocols during IVF, gonadotropin modifications are generally futile in addressing such damage. Even when additional oocytes are retrieved, quality is frequently poor. Older oocytes with serious cytoplasmic and/or chromosomal errors are often harvested from poorly perfused follicles, and ovarian vascularity and follicular oxygenation impact embryonic chromosomal competency. Because stimulation regimens exert their effects briefly and immediately before ovulation, gonadotropins alone are an ineffective antidote to long-term hypoxic pathology. In contrast, the tissue repair properties (and particularly the angiogenic effects) of platelet-rich plasma (PRP) are well known, with applications in other clinical contexts. Injection of conventional PRP and/or its components (e.g., isolated platelet-derived growth factors as a cell-free substrate) into ovarian tissue prior to IVF has been reported to improve reproductive outcomes. Any derivative neovascularity may modulate oocyte competence by increasing cellular oxygenation and/or lowering concentrations of intraovarian reactive oxygen species. We propose a mechanism to support intrastromal angiogenesis, improved follicular perfusion, and, crucially, embryo ploidy rescue. This last effect may be explained by mRNA upregulation coordinated by PRP-associated molecular signaling, as in other tissue systems. Additionally, we outline an intraovarian injection technique for platelet-derived growth factors and present this method to help minimize reliance on donor oocytes and conventional hormone replacement therapy.

Effects of Adenoviral Gene Transduction on the Stemness of Human Bone Marrow Mesenchymal Stem Cells

  • Marasini, Subash;Chang, Da-Young;Jung, Jin-Hwa;Lee, Su-Jung;Cha, Hye Lim;Suh-Kim, Haeyoung;Kim, Sung-Soo
    • Molecules and Cells
    • /
    • v.40 no.8
    • /
    • pp.598-605
    • /
    • 2017
  • Human mesenchymal stem cells (MSCs) are currently being evaluated as a cell-based therapy for tissue injury and degenerative diseases. Recently, several methods have been suggested to further enhance the therapeutic functions of MSCs, including genetic modifications with tissue- and/or diseasespecific genes. The objective of this study was to examine the efficiency and stability of transduction using an adenoviral vector in human MSCs. Additionally, we aimed to assess the effects of transduction on the proliferation and multipotency of MSCs. The results indicate that MSCs can be transduced by adenoviruses in vitro, but high viral titers are necessary to achieve high efficiency. In addition, transduction at a higher multiplicity of infection (MOI) was associated with attenuated proliferation and senescence-like morphology. Furthermore, transduced MSCs showed a diminished capacity for adipogenic differentiation while retaining their potential to differentiate into osteocytes and chondrocytes. This work could contribute significantly to clinical trials of MSCs modified with therapeutic genes.