• Title/Summary/Keyword: Genetic theory

Search Result 294, Processing Time 0.029 seconds

Pyrolysis of Lignin Obtained from Cinnamyl Alcohol Dehydrogenase (CAD) Downregulated Arabidopsis Thaliana

  • Kim, Kwang Ho;Kim, Jae-Young;Kim, Chang Soo;Choi, Joon Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.47 no.4
    • /
    • pp.442-450
    • /
    • 2019
  • Despite its potential as a renewable source for fuels and chemicals, lignin valorization still faces technical challenges in many aspects. Overcoming such challenges associated with the chemical recalcitrance of lignin can provide many opportunities to innovate existing and emerging biorefineries. In this work, we leveraged a biomass genetic engineering technology to produce phenolic aldehyde-rich lignin structure via downregulation of cinnamyl alcohol dehydrogenase (CAD). The structurally altered lignin obtained from the Arabidopsis thaliana CAD mutant was pyrolyzed to understand the effect of structural alteration on thermal behavior of lignin. The pyrolysis was conducted at 400 and $500^{\circ}C$ using an analytical pyrolyzer connected with GC/MS and the products were systematically analyzed. The results indicate that aldehyde-rich lignin undergoes fragmentation reaction during pyrolysis forming a considerable amount of C6 units. Also, it was speculated that highly reactive phenolic aldehydes facilitate secondary repolymerization reaction as described by the lower yield of overall phenolic compounds compared to wild type (WT) lignin. Quantum mechanical calculation clearly shows the higher electrophilicity of transgenic lignin than that of WT, which could promote both fragmentation and recondensation reactions. This work provides mechanistic insights toward biomass genetic engineering and its application to the pyrolysis allowing to establish sustainable biorefinery in the future.

In - Silico approach and validation of JNK1 Inhibitors for Colon Rectal Cancer Target

  • Bavya, Chandrasekhar;Thirumurthy, Madhavan
    • Journal of Integrative Natural Science
    • /
    • v.15 no.4
    • /
    • pp.145-152
    • /
    • 2022
  • Colon rectal cancer is one of the frequently diagnosed cancers worldwide. In recent times the drug discovery for colon cancer is challenging because of their speedy metastasis and morality of these patients. C-jun N-terminal kinase signaling pathway controls the cell cycle survival and apoptosis. Evidence has shown that JNK1 promotes the tumor progression in various types of cancers like colon cancer, breast cancer and lung cancer. Recent study has shown that inhibiting, JNK1 pathway is identified as one of the important cascades in drug discovery. One of the recent approaches in the field of drug discovery is drug repurposing. In drug repurposing approach we have virtually screened ChEMBL dataset against JNK1 protein and their interactions have been studied through Molecular docking. Cross docking was performed with the top compounds to be more specific with JNK1 comparing the affinity with JNK2 and JNK3.The drugs which exhibited higher binding were subjected to Conceptual - Density functional theory. The results showed mainly Entrectinib and Exatecan showed better binding to the target.

Numerical solution of beam equation using neural networks and evolutionary optimization tools

  • Babaei, Mehdi;Atasoy, Arman;Hajirasouliha, Iman;Mollaei, Somayeh;Jalilkhani, Maysam
    • Advances in Computational Design
    • /
    • v.7 no.1
    • /
    • pp.1-17
    • /
    • 2022
  • In this study, a new strategy is presented to transmit the fundamental elastic beam problem into the modern optimization platform and solve it by using artificial intelligence (AI) tools. As a practical example, deflection of Euler-Bernoulli beam is mathematically formulated by 2nd-order ordinary differential equations (ODEs) in accordance to the classical beam theory. This fundamental engineer problem is then transmitted from classic formulation to its artificial-intelligence presentation where the behavior of the beam is simulated by using neural networks (NNs). The supervised training strategy is employed in the developed NNs implemented in the heuristic optimization algorithms as the fitness function. Different evolutionary optimization tools such as genetic algorithm (GA) and particle swarm optimization (PSO) are used to solve this non-linear optimization problem. The step-by-step procedure of the proposed method is presented in the form of a practical flowchart. The results indicate that the proposed method of using AI toolsin solving beam ODEs can efficiently lead to accurate solutions with low computational costs, and should prove useful to solve more complex practical applications.

Haplotype Assembly from Weighted SNP Fragments and Related Genotype Information (신뢰도를 가진 SNP 단편들과 유전자형으로부터 일배체형 조합)

  • Kang, Seung-Ho;Jeong, In-Seon;Choi, Mun-Ho;Lim, Hyeong-Seok
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.35 no.11
    • /
    • pp.509-516
    • /
    • 2008
  • The Minimum Letter Flips (MLF) model and the Weighted Minimum Letter Flips (WMLF) model are for solving the haplotype assembly problem. But these two models are effective only when the error rate in SNP fragments is low. In this paper, we first establish a new computational model that employs the related genotype information as an improvement of the WMLF model and show its NP-hardness, and then propose an efficient genetic algorithm to solve the haplotype assembly problem. The results of experiments on random data set and a real data set indicate that the introduction of genotype information to the WMLF model is quite effective in improving the reconstruction rate especially when the error rate in SNP fragments is high. And the results also show that genotype information increases the convergence speed of the genetic algorithm.

A Study on Bio Art in Modification and Hybrid of Vegetables (식물의 변형과 혼성을 이용한 바이오아트 연구)

  • Jeon, Hyesook
    • The Journal of Art Theory & Practice
    • /
    • no.15
    • /
    • pp.137-165
    • /
    • 2013
  • The prefix 'bio' with the meaning of 'life,' has been used for biotechnology, biochemistry, bioengineering, biomedicine, bioethics, bio-information as well as 'bio art' since 1990s. Bio art is an art as life itself and a kind of new direction in contemporary art that manipulates the processes of life. Bio artists use the properties of life and materials as scientists in laboratory of biology, and change organisms within their own species, of invents life with new characteristics. Technologically and socio-culturally, bio art has been connected with bioengineering. This essay is on the bio art that use vegetables, and on the specified gaze of so-called 'Sci-Artists.' Not only the genetically modified vegetables like works of George Gessert, Ackroyd & Harvey, and Eduardo Kac, but also the works made from the critical viewpoint like those of Paul Vanouse, Natalie Jeremijenko, and Amy Youngs, have 'the molecular gaze'(Suzanne Anker and Dorothy Nelkin's concept) of the genetic age in their art works. As the art history have showed, artists' gazes have insights about social problems that surround us. Bioartists' gazes reveal their insights about social and ethical problems, possibly concealed by science itself. Those problems are about results from practical discoveries of the sequencing of the genome, genetic engineering, cloning and reproduction of human and animals, body transformation, and the commercialization of cell and genes etc. We can find the significance of bioart in the molecular gaze about those problems, and we can rethink the identity of human, the reception of social influences from bio-technology and medicine.

  • PDF

Optimum Design of a Helicopter Tailrotor Driveshaft Using Flexible Matrix Composite (유연복합재를 이용한 헬리콥터 꼬리날개 구동축의 최적 설계)

  • Shin, Eung-Soo;Hong, Eul-Pyo;Lee, Kee-Nyeong;Kim, Ock-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.12
    • /
    • pp.1914-1922
    • /
    • 2004
  • This paper provides a comprehensive study of optimum design of a helicopter tailrotor driveshaft made of the flexible matrix composites (FMCs). Since the driveshaft transmits power while subjected to large bending deformation due to aerodynamic loadings, the FMCs can be ideal for enhancing the drivetrain performance by absorbing the lateral deformation without shaft segmentation. However, the increased lateral flexibility and high internal damping of the FMCs may induce whirling instability at supercritical operating conditions. Thus, the purpose of optimization in this paper is to find a set of tailored FMC parameters that compromise between the lateral flexibility and the whirling stability while satisfying several criteria such as torsional buckling safety and the maximum shaft temperature at steadystate conditions. At first, the drivetrain was modeled based on the finite element method and the classical laminate theory with complex modulus approach. Then, an objective function was defined as a combination of an allowable bending deformation and external damping and a genetic algorithm was applied to search for an optimum set with respect to ply angles and stack sequences. Results show that an optimum laminate consists of two groups of layers: (i) one has ply angles well below 45$^{\circ}$ and the other far above 45$^{\circ}$ and (ii) the number of layers with low ply angles is much bigger than that with high ply angles. It is also found that a thick FMC shaft is desirable for both lateral flexibility and whirling stability. The genetic algorithm was effective in converging to several local optimums, whose laminates exhibit similar patterns as mentioned above.

Haplotype Inference Using a Genetic Algorithm (유전자 알고리즘을 이용한 하플로타입 추론)

  • Lee See-Young;Han Hyun-Goo;Kim Hee-Chul
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.6
    • /
    • pp.316-325
    • /
    • 2006
  • In diploid organisms like human, each chromosome consists of two copies. A haplotype is a SNP(single nucleotide polymorphism) sequence information from each copy. Finding the complete map of haplotypes in human population is one of the important issues in human genome. To obtain haplotypes via experimental methods is both time-consuming and expensive. Therefore, inference methods have been used to infer haplotyes from the genotype samples. In this paper, we propose a new approach using genetic algorithm to infer haplotypes, which is based on the model of finding the minimum number of haplotypes that explain the genotype samples. We show that by doing a computational experiment, our algorithm has the correctness similar to HAPAR[1] which is known to produce good results while the execution time of our algorithm is less than that of HAPAR as the input size is increased. The experimental result is also compared with the result by the recent method PTG[2].

Electronic Risk Assessment System as an Appropriate Tool for the Prevention of Cancer: a Qualitative Study

  • Amoli, Amir hossein Javan;Maserat, Elham;Safdari, Reza;Zali, Mohammad Reza
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.16 no.18
    • /
    • pp.8595-8598
    • /
    • 2016
  • Background: Decision making modalities for screening for many cancer conditions and different stages have become increasingly complex. Computer-based risk assessment systems facilitate scheduling and decision making and support the delivery of cancer screening services. The aim of this article was to survey electronic risk assessment system as an appropriate tool for the prevention of cancer. Materials and Methods: A qualitative design was used involving 21 face-to-face interviews. Interviewing involved asking questions and getting answers from exclusive managers of cancer screening. Of the participants 6 were female and 15 were male, and ages ranged from 32 to 78 years. The study was based on a grounded theory approach and the tool was a semi-structured interview. Results: Researchers studied 5 dimensions, comprising electronic guideline standards of colorectal cancer screening, work flow of clinical and genetic activities, pathways of colorectal cancer screening and functionality of computer based guidelines and barriers. Electronic guideline standards of colorectal cancer screening were described in the s3 categories of content standard, telecommunications and technical standards and nomenclature and classification standards. According to the participations' views, workflow and genetic pathways of colorectal cancer screening were identified. Conclusions: The study demonstrated an effective role of computer-guided consultation for screening management. Electronic based systems facilitate real-time decision making during a clinical interaction. Electronic pathways have been applied for clinical and genetic decision support, workflow management, update recommendation and resource estimates. A suitable technical and clinical infrastructure is an integral part of clinical practice guidline of screening. As a conclusion, it is recommended to consider the necessity of architecture assessment and also integration standards.

Using genetic algorithm to optimize rough set strategy in KOSPI200 futures market (선물시장에서 러프집합 기반의 유전자 알고리즘을 이용한 최적화 거래전략 개발)

  • Chung, Seung Hwan;Oh, Kyong Joo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.2
    • /
    • pp.281-292
    • /
    • 2014
  • As the importance of algorithm trading is getting stronger, researches for artificial intelligence (AI) based trading strategy is also being more important. However, there are not enough studies about using more than two AI methodologies in one trading system. The main aim of this study is development of algorithm trading strategy based on the rough set theory that is one of rule-based AI methodologies. Especially, this study used genetic algorithm for optimizing profit of rough set based strategy rule. The most important contribution of this study is proposing efficient convergence of two different AI methodology in algorithm trading system. Target of purposed trading system is KOPSI200 futures market. In empirical study, we prove that purposed trading system earns significant profit from 2009 to 2012. Moreover, our system is evaluated higher shape ratio than buy-and-hold strategy.

Genetic analysis study of Sasang Constitution classification (사상의학의 객관화를 위한 유전적 분석 연구)

  • Cho, Dong-Wuk;Lee, Chang-Soo;Ko, Byung-Hee;Hong, Suck-Chull;Lee, Eui-Ju;Kwon, Gwen-Hyuck;Cho, Hwang-Sung
    • Korean Journal of Oriental Medicine
    • /
    • v.2 no.1
    • /
    • pp.402-406
    • /
    • 1996
  • The main idea of Sasang medicine is that everyone has his own unique constitution. There are four kinds of constitutions and these are Taeyang, Soyang, Teaum and Soum. Although Sasang medicine is a unique and originative medical theory with creative ideas of Korean traditional medicine, the classification of individual constitution mainly depends on the methods which may not be objectively proven and scientifically understood. This study was carried out tn establish scientific understanding of Sasang medicine by investigating the possible genetic difference among four constitutions. Sasang constitution classification was performed by Sasang medicine research group in Korea Institute of Oriental Medicine and Kyung Hee University, Genomic DNA was prepared from the blood of individuals of different constitutions and RAPD(Random amplified polymorphic DNAs) analysis was then carried out to investigate the possible difference among different constitutions on DNA level. For RAPD analysis, ten different random primers were applied to Teaum, Soyang and Soum group DNA samples and the presence of DNA markers specific for each constitution was investigated.

  • PDF