• Title/Summary/Keyword: Genetic analyses

Search Result 984, Processing Time 0.025 seconds

Genetic Divergence and Relationship Among Four Abalone Species by Isozyme and AFLP analyses (Isozyme 및 AFLP분석에 의한 전복류 4종간의 유전적 차이 및 유연관계)

  • Park Choul-ji;Kijima Akihiro
    • Journal of Aquaculture
    • /
    • v.18 no.4
    • /
    • pp.252-259
    • /
    • 2005
  • Isozyme and AFLP analyses were examined to estimate the utilities of them as a genetic marker. The utilities were evaluated by genetic divergence and relationships among the four distinct abalone species; Haliotis discus hannai collected from northeast coast of Japan and Yellow-Sea coast of China, H. rufescens collected from west coast of USA, H rubra collected from southeast coast of Australia and H midae collected from Cape Town of South Africa. Isozyme and AFLP analyses showed a clear genetic divergence between every pair of species. Genetic relationships among the low species estimated by isozyme and AFLP analyses reflected to geographical distribution and morphological characteristics. In conclusion, Isozyme and AFLP analyses are suitable genetic markers far estimates of genetic divergence and relationship among abalone species.

Genetic Diversity of Orobanche cumana Populations in Serbia

  • Ivanovic, Zarko;Marisavljevic, Dragana;Marinkovic, Radovan;Mitrovic, Petar;Blagojevic, Jovana;Nikolic, Ivan;Pavlovic, Danijela
    • The Plant Pathology Journal
    • /
    • v.37 no.6
    • /
    • pp.512-520
    • /
    • 2021
  • In this study, we report genetic characterization of Orobanche cumana, the causal agent of sunflower wilting in Serbia. The genetic diversity of this parasitic plant in Serbia was not studied before. Random amplified polymorphic DNA (RAPD) markers and partial rbcL gene sequences analysis were used to characterize the O. cumana populations at the molecular level. While phylogenetic analyses of RAPD-PCR amplicons were performed using unweighted pair-group Method analyses, rbcL gene sequences were analyzed using neigbor joining method and minimum spanning tree. Molecular analyses of RAPD-PCR analysis revealed high genetic diversity of O. cumana populations which indicated high adaptive potential of this parasitic weed in Serbia. Further analyses of rbcL gene using minimum spanning tree revealed clear differences among diverse sections of Orobanche genus. Although this molecular marker lacked the resolution to display intrapopulation diversity it could be a useful tool for understanding the evolution of this parasitic plant. Our results suggested that O. cumana has great genetic potential which can lead to differentiation of more virulent races which is important for determining crop breeding strategies for their control.

Genetic evaluation of sheep for resistance to gastrointestinal nematodes and body size including genomic information

  • Torres, Tatiana Saraiva;Sena, Luciano Silva;dos Santos, Gleyson Vieira;Filho, Luiz Antonio Silva Figueiredo;Barbosa, Bruna Lima;Junior, Antonio de Sousa;Britto, Fabio Barros;Sarmento, Jose Lindenberg Rocha
    • Animal Bioscience
    • /
    • v.34 no.4
    • /
    • pp.516-524
    • /
    • 2021
  • Objective: The genetic evaluation of Santa Inês sheep was performed for resistance to gastrointestinal nematode infection (RGNI) and body size using different relationship matrices to assess the efficiency of including genomic information in the analyses. Methods: There were 1,637 animals in the pedigree and 500, 980, and 980 records of RGNI, thoracic depth (TD), and rump height (RH), respectively. The genomic data consisted of 42,748 SNPs and 388 samples genotyped with the OvineSNP50 BeadChip. The (co)variance components were estimated in single- and multi-trait analyses using the numerator relationship matrix (A) and the hybrid matrix H, which blends A with the genomic relationship matrix (G). The BLUP and single-step genomic BLUP methods were used. The accuracies of estimated breeding values and Spearman rank correlation were also used to assess the feasibility of incorporating genomic information in the analyses. Results: The heritability estimates ranged from 0.11±0.07, for TD (in single-trait analysis using the A matrix), to 0.38±0.08, for RH (using the H matrix in multi-trait analysis). The estimates of genetic correlation ranged from -0.65±0.31 to 0.59±0.19, using A, and from -0.42±0.30 to 0.57±0.16 using H. The gains in accuracy of estimated breeding values ranged from 2.22% to 75.00% with the inclusion of genomic information in the analyses. Conclusion: The inclusion of genomic information will benefit the direct selection for the traits in this study, especially RGNI and TD. More information is necessary to improve the understanding on the genetic relationship between resistance to nematode infection and body size in Santa Inês sheep. The genetic evaluation for the evaluated traits was more efficient when genomic information was included in the analyses.

Genealogical Relationship between Pedigree and Microsatellite Information and Analysis of Genetic Structure of a Highly Inbred Japanese Black Cattle Strain

  • Sasazaki, S.;Honda, T.;Fukushima, M.;Oyama, K.;Mannen, H.;Mukai, F.;Tsuji, S.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.17 no.10
    • /
    • pp.1355-1359
    • /
    • 2004
  • Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree nformation. Japanese Black cattle of Hyogo prefecture (Tajima strain) are famous for its ability to produce high-quality meat and have been maintained as a closed system for more than 80 years. In order to assess the usefulness of microsatellite markers in closed cattle populations, and evaluate the genetic structure of the Tajima strain, we analyzed representative dams of the Tajima strain comprised of the substrains Nakadoi and Kinosaki. Genetic variability analyses indicated low genetic diversity in the Tajima strain. In addition, a recent genetic bottleneck, which could be accounted for by the high level of inbreeding, was detected in both substrains. In phylogenetic analyses, relationship coefficients and genetic distances between individuals were calculated using pedigree and microsatellite information. Two phylogenetic trees were constructed from microsatellite and pedigree information using the UPGMA method. Both trees illustrated that most individuals were distinguished clearly on the basis of the two substrains, although in the microsatellite tree some individuals appeared in clusters of different substrains. Comparing the two phylogenetic trees revealed good consistency between the microsatellite analysis tree and the pedigree information. The correlation coefficient between genetic distances derived from microsatellite and pedigree information was 0.686 with a high significance level (p<0.001). These results indicated that microsatellite information may provide data substantially equivalent to pedigree information even in unusually inbred herds of cattle, and suggested that microsatellite markers may be useful in revealing genetic structure without accurate or complete pedigree information.

Genetic Relationships of Panax Species by RAPD and ISSR Analyses

  • In, Dong-Su;Kim, Young-Chang;Bang, Kyong-Hwan;Chung, Jong-Wook;Kim, Ok-Tae;Hyun, Dong-Yoon;Cha, Seon-Woo;Kim, Tae-Soo;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.249-253
    • /
    • 2005
  • This study was carried out to develop convenient and reproducible methods for identifying the genetic relationship among germplasms of Panax species based on molecular genetics. Using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses, genetic polymorphism of the Panax species was investigated with following cultivars and accessions, such as Chunpoong, Yunpoong, Kopoong, Sunpoong, and Kumpoong in domestic cultivars, Hwangsuk, Jakyung and Suckju in domestic accessions, and Panax quinquefolius L. and Panax japonicus C.A. Meyer in foreign introduced accessions, respectively. Specific DNA fragments ranging from 200 to 3,000 base pairs in size could be obtained with various ISSR and RAPD primers under the optimized PCR conditions. The dissimilarity coefficients among the genetic polymorphisms of ginseng cultivars and accessions were calculated from 0.26 to 0.90 in RAPD and from 0.12 to 0.89 in ISSR analysis, respectively. Eleven plant samples were grouped siblings together with cultivars and parents based on cluster analysis of genetic distance depending on genetic property such as origin of the species. In results, both RAPD and ISSR analyses were useful for identifying the genetic relationship among cultivars and accessions of Panax species at DNA level.

Genetic diversity analysis of Thai indigenous pig population using microsatellite markers

  • Charoensook, Rangsun;Gatphayak, Kesinee;Brenig, Bertram;Knorr, Christoph
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.10
    • /
    • pp.1491-1500
    • /
    • 2019
  • Objective: European pigs have been imported to improve the economically important traits of Thai pigs by crossbreeding and was finally completely replaced. Currently Thai indigenous pigs are particularly kept in a small population. Therefore, indigenous pigs risk losing their genetic diversity and identity. Thus, this study was conducted to perform large-scale genetic diversity and phylogenetic analyses on the many pig breeds available in Thailand. Methods: Genetic diversity and phylogenetics analyses of 222 pigs belonging to Thai native pigs (TNP), Thai wild boars (TWB), European commercial pigs, commercial crossbred pigs, and Chinese indigenous pigs were investigated by genotyping using 26 microsatellite markers. Results: The results showed that Thai pig populations had a high genetic diversity with mean total and effective ($N_e$) number of alleles of 14.59 and 3.71, respectively, and expected heterozygosity ($H_e$) across loci (0.710). The polymorphic information content per locus ranged between 0.651 and 0.914 leading to an average value above all loci of 0.789, and private alleles were found in six populations. The higher $H_e$ compared to observed heterozygosity ($H_o$) in TNP, TWB, and the commercial pigs indicated some inbreeding within a population. The Nei's genetic distance, mean $F_{ST}$ estimates, neighbour-joining tree of populations and individual, as well as multidimensional analysis indicated close genetic relationship between Thai indigenous pigs and some Chinese pigs, and they are distinctly different from European pigs. Conclusion: Our study reveals a close genetic relationship between TNP and Chinese pigs. The genetic introgression from European breeds is found in some TNP populations, and signs of genetic erosion are shown. Private alleles found in this study should be taken into consideration for the breeding program. The genetic information from this study will be a benefit for both conservation and utilization of Thai pig genetic resources.

Genetic algorithm based optimum design of non-linear steel frames with semi-rigid connections

  • Hayalioglu, M.S.;Degertekin, S.O.
    • Steel and Composite Structures
    • /
    • v.4 no.6
    • /
    • pp.453-469
    • /
    • 2004
  • In this article, a genetic algorithm based optimum design method is presented for non-linear steel frames with semi-rigid connections. The design algorithm obtains the minimum weight frame by selecting suitable sections from a standard set of steel sections such as European wide flange beams (i.e., HE sections). A genetic algorithm is employed as optimization method which utilizes reproduction, crossover and mutation operators. Displacement and stress constraints of Turkish Building Code for Steel Structures (TS 648, 1980) are imposed on the frame. The algorithm requires a large number of non-linear analyses of frames. The analyses cover both the non-linear behaviour of beam-to-column connection and $P-{\Delta}$ effects of beam-column members. The Frye and Morris polynomial model is used for modelling of semi-rigid connections. Two design examples with various type of connections are presented to demonstrate the application of the algorithm. The semi-rigid connection modelling results in more economical solutions than rigid connection modelling, but it increases frame drift.

Status of corn diversity in the marginal uplands of sarangani province, the Philippines: implications for conservation and sustainable use

  • Aguilar, Catherine Hazel;Espina, Pamela Grace;Zapico, Florence
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.68-68
    • /
    • 2017
  • The status of corn genetic diversity in the uplands of Sarangani in Southern Philippines was investigated using 12 morphological traits subjected to multivariate statistical analyses. Information about traditional farming, post-harvest and storage practices were also elicited especially in relation to losses of traditional varieties, a phenomenon known as genetic erosion. While a handful of farmers still plant traditional corn varieties in the remotest areas, a significant number had already shifted to genetically modified corn. Furthermore, principal component analysis (PCA) reduced the 12 morphological traits into 5 principal components and identified ear length and ear weight to be major contributors to variation. Cluster Analysis, on the other hand, formed two distinct groups but failed to give information about intra-cluster variability among the 32 collected corn accessions. These results warrant that more informative morphological traits and that molecular markers will be used to obtain a better picture of genetic diversity in Sarangani upland corn. Molecular analysis is also needed to establish genetic identities of these cultivars and to detect gene introgression from GM varieties into the gene pool of farmers' corn varieties. These analyses are imperative for the conservation of traditional corn varieties before they disappear in the Sarangani uplands because of shifting priorities of upland farmers.

  • PDF

Genetic Heterogeneity of the Tropical Abalone (Haliotis asinina) Revealed by RAPD and Microsatellite Analyses

  • Tang, Sureerat;Popongviwat, Aporn;Klinbunga, Sirawut;Tassanakajon, Anchalee;Jarayabhand, Padermsak;Menasveta, Piamsak
    • BMB Reports
    • /
    • v.38 no.2
    • /
    • pp.182-190
    • /
    • 2005
  • Genetic heterogeneity of the tropical abalone, Haliotis asinina was examined using randomly amplified polymorphic DNA (RAPD) and microsatellite analyses. One hundred and thirteen polymorphic RAPD fragments were generated. The percentage of polymorphic bands of H. asinina across overall primers was 85.20%. The average genetic distance of natural samples within the Gulf of Thailand (HACAME and HASAME) was 0.0219. Larger distance was observed when those samples were compare with HATRAW from the Andaman Sea (0.2309 and 0.2314). Geographic heterogeneity and $F_{ST}$ analyses revealed population differentiation between H. asinina from the Gulf of Thailand and the Andaman Sea (p < 0.0001). Three microsatellite loci (CUHas1, CUHas4 and CUHas5) indicated relatively high genetic diversity in H. asinina (total number of alleles = 26, 5, 23 and observed heterozygosity = 0.84, 0.42 and 0.33, respectively). Significant population differentiation was also found between samples from different coastal regions (p < 0.0001). Therefore, the gene pool of natural H. asinina in coastal Thai waters can be genetically divided to 2 different populations; the Gulf of Thailand (A) and the Andaman Sea (B).

Genome-wide Single Nucleotide Polymorphism Analyses Reveal Genetic Diversity and Structure of Wild and Domestic Cattle in Bangladesh

  • Uzzaman, Md. Rasel;Edea, Zewdu;Bhuiyan, Md. Shamsul Alam;Walker, Jeremy;Bhuiyan, A.K.F.H.;Kim, Kwan-Suk
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.10
    • /
    • pp.1381-1386
    • /
    • 2014
  • In spite of variation in coat color, size, and production traits among indigenous Bangladeshi cattle populations, genetic differences among most of the populations have not been investigated or exploited. In this study, we used a high-density bovine single nucleotide polymorphism (SNP) 80K Bead Chip derived from Bos indicus breeds to assess genetic diversity and population structure of 2 Bangladeshi zebu cattle populations (red Chittagong, n = 28 and non-descript deshi, n = 28) and a semi-domesticated population (gayal, n = 17). Overall, 95% and 58% of the total SNPs (69,804) showed polymorphisms in the zebu and gayal populations, respectively. Similarly, the average minor allele frequency value was as high 0.29 in zebu and as low as 0.09 in gayal. The mean expected heterozygosity varied from $0.42{\pm}0.14$ in zebu to $0.148{\pm}0.14$ in gayal with significant heterozygosity deficiency of 0.06 ($F_{IS}$) in the latter. Coancestry estimations revealed that the two zebu populations are weakly differentiated, with over 99% of the total genetic variation retained within populations and less than 1% accounted for between populations. Conversely, strong genetic differentiation ($F_{ST}=0.33$) was observed between zebu and gayal populations. Results of population structure and principal component analyses suggest that gayal is distinct from Bos indicus and that the two zebu populations were weakly structured. This study provides basic information about the genetic diversity and structure of Bangladeshi cattle and the semi-domesticated gayal population that can be used for future appraisal of breed utilization and management strategies.