• Title/Summary/Keyword: Genetic Progress

Search Result 225, Processing Time 0.028 seconds

Fibrodysplasia Ossificans Progressiva - A Case Report - (진행성 골화성 섬유이형성증 - 성인 1례보고 -)

  • Yun, Yeong- Sik
    • The Journal of the Korean bone and joint tumor society
    • /
    • v.10 no.1
    • /
    • pp.50-55
    • /
    • 2004
  • Fibrodysplasia ossificans progressiva is a very rare genetic disorder, but is possible to diagnose with mass on neck or scalp in early neonate or child and accompanying characteristic congenital malformation of great toe. But because inappropriate treatment and complications from misdiagnosis may aggravate the progress of the disease, so the disorder require careful inspection for accurate diagnosis. We describe a case that was misdiagnosed properly and treated inappropriately and the natural history of the disease in adult.

  • PDF

Diffuse Intrinsic Pontine Glioma : Clinical Features, Molecular Genetics, and Novel Targeted Therapeutics

  • Mathew, Ryan K.;Rutka, James T.
    • Journal of Korean Neurosurgical Society
    • /
    • v.61 no.3
    • /
    • pp.343-351
    • /
    • 2018
  • Diffuse intrinsic pontine glioma (DIPG) is a deadly paediatric brain cancer. Transient response to radiation, ineffective chemotherapeutic agents and aggressive biology result in rapid progression of symptoms and a dismal prognosis. Increased availability of tumour tissue has enabled the identification of histone gene aberrations, genetic driver mutations and methylation changes, which have resulted in molecular and phenotypic subgrouping. However, many of the underlying mechanisms of DIPG oncogenesis remain unexplained. It is hoped that more representative in vitro and preclinical models-using both xenografted material and genetically engineered mice-will enable the development of novel chemotherapeutic agents and strategies for targeted drug delivery. This review provides a clinical overview of DIPG, the barriers to progress in developing effective treatment, updates on drug development and preclinical models, and an introduction to new technologies aimed at enhancing drug delivery.

Advances and Future Directions in Poultry Nutrition: An Overview

  • Ravindran, Velmurugu
    • Korean Journal of Poultry Science
    • /
    • v.39 no.1
    • /
    • pp.53-62
    • /
    • 2012
  • In the past, poultry nutrition has focussed on increasing the production efficiency to meet the progress achieved in the genetic potential of broilers and layers. Future directions in poultry nutrition will be driven by not only by the need to maximise biological and economic performance of birds, but also by societal issues (environment, antibiotic growth promoters, welfare, traceability and use of genetically modified ingredients). Key advances in poultry nutrition are discussed and future directions, which can be expected, are highlighted. Given the tightening supply and ever-increasing cost of raw materials, there will be more pressure to extract every unit of energy and nutrients from feed ingredients. In this context, a number of feed additives are expected to play an increasingly significant role. Feed enzymes and crystalline amino acids, in particular, will have a profound effect on future sustainability of the poultry industry. Future nutritional research need to focus on identifying the barriers to effective digestion and utilisation of nutrients and, to achieve this objective, nutritionists must combine their expertise with those of specialising in other biological sciences, including immunology, microbiology, histology and molecular biology.

Atypical hemolytic uremic syndrome and eculizumab therapy in children

  • Kim, Seong Heon;Kim, Hye Young;Kim, Su Young
    • Clinical and Experimental Pediatrics
    • /
    • v.61 no.2
    • /
    • pp.37-42
    • /
    • 2018
  • Hemolytic uremic syndrome (HUS) is often encountered in children with acute kidney injury. Besides the well-known shiga toxin-producing Escherichia coli-associated HUS, atypical HUS (aHUS) caused by genetic complement dysregulation has been studied recently. aHUS is a rare, chronic, and devastating disorder that progressively damages systemic organs, resulting in stroke, end-stage renal disease, and death. The traditional treatment for aHUS is mainly plasmapheresis or plasma infusion; however, many children with aHUS will progress to chronic kidney disease despite plasma therapy. Eculizumab is a newly developed biologic that blocks the terminal complement pathway and has been successfully used in the treatment of aHUS. Currently, several guidelines for aHUS, including the Korean guideline, recommend eculizumab as the first-line therapy in children with aHUS. Moreover, life-long eculizumab therapy is generally recommended. Further studies on discontinuation of eculizumab are needed.

Genomics, Proteomics and Nutrition : Applications to Obesity Research

  • Sumithra Urs;Heo, Young-Ran;Kim, Suyeon;Kim, Jung-Han;Brynn H. Jones
    • Nutritional Sciences
    • /
    • v.5 no.3
    • /
    • pp.129-133
    • /
    • 2002
  • Obesity is a major public health problem in western countries. Genetic and environmental factors, separately or in combination are major determinants of fat mass. Both central effectors (primarily hypothalamus) and peripheral tissues (such as adipose tissue) are implicated in the pathogenesis of obesity. A significant number of studies have documented potential contribution of adipose tissue -via its newly discovered secretory function- to the pathogenesis of obesity and co-morbid conditions including cardiovascular disease, diabetes and hypertension. Applications of analytical techniques such as genomics and proteomics have enabled better understanding of biological sciences in general and have only being applied recently to nutritional sciences including obesity research. Here, we review the recent progress in adipose tissue functional genomics and proteomics, and the importance of these studies in energy metabolism and obesity research.

Autophagy and Longevity

  • Nakamura, Shuhei;Yoshimori, Tamotsu
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.65-72
    • /
    • 2018
  • Autophagy is an evolutionally conserved cytoplasmic degradation system in which varieties of materials are sequestered by a double membrane structure, autophagosome, and delivered to the lysosomes for the degradation. Due to the wide varieties of targets, autophagic activity is essential for cellular homeostasis. Recent genetic evidence indicates that autophagy has a crucial role in the regulation of animal lifespan. Basal level of autophagic activity is elevated in many longevity paradigms and the activity is required for lifespan extension. In most cases, genes involved in autophagy and lysosomal function are induced by several transcription factors including HLH-30/TFEB, PHA-4/FOXA and MML-1/Mondo in long-lived animals. Pharmacological treatments have been shown to extend lifespan through activation of autophagy, indicating autophagy could be a potential and promising target to modulate animal lifespan. Here we summarize recent progress regarding the role of autophagy in lifespan regulation.

Treatment of steroid-resistant pediatric nephrotic syndrome

  • Kang, Hee-Gyung
    • Clinical and Experimental Pediatrics
    • /
    • v.54 no.8
    • /
    • pp.317-321
    • /
    • 2011
  • Children who suffer from steroid-resistant nephrotic syndrome (SRNS) require aggressive treatment to achieve remission. When intravenous high-dose methylprednisolone fails, calcineurin inhibitors, such as cyclosporine and tacrolimus, are used as the first line of treatment. A significant number of patients with SRNS progress to end-stage renal disease if remission is not achieved. For these children, renal replacement therapy can also be problematic; peritoneal dialysis may be accompanied by significant protein loss through the peritoneal membrane, and kidney allograft transplantation may be complicated by recurrence of SRNS. Plasmapheresis and rituximab were initially used for treatment of recurrent SRNS after transplantation; these are now under consideration as rescue therapies for refractory SRNS. Although the prognosis of SRNS is complicated and unfavorable, intensive treatment in the early stages of the disease may achieve remission in more than half of the patients. Therefore, timely referral of pediatric SRNS patients to pediatric nephrology specialists for histological and genetic diagnosis and treatment is highly recommended.

Cardiovascular Molecular Imaging (심장 분자영상)

  • Lee, Kyung-Han
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.3
    • /
    • pp.229-239
    • /
    • 2009
  • Molecular imaging strives to visualize processes in living subjects at the molecular level. Monitoring biochemical processes at this level will allow us to directly track biological processes and signaling events that lead to pathophysiological abnormalities, and help make personalized medicine a reality by allowing evaluation of therapeutic efficacies on an individual basis. Although most molecular imaging techniques emerged from the field of oncology, they have now gradually gained acceptance by the cardiovascular community. Hence, the availability of dedicated high-resolution small animal imaging systems and specific targeting imaging probes is now enhancing our understanding of cardiovascular diseases and expediting the development of newer therapies. Examples include imaging approaches to evaluate and track the progress of recent genetic and cellular therapies for treatment of myocardial ischemia. Other areas include in vivo monitoring of such key molecular processes as angiogenesis and apoptosis, Cardiovascular molecular imaging is already an important research tool in preclinical experiments. The challenge that lies ahead is to implement these techniques into the clinics so that they may help fulfill the promise of molecular therapies and personalized medicine, as well as to resolve disappointments and controversies surrounding the field.

Progress in Transgenic Cloned Pig for Xenotransplantation

  • Park, Kwang-Wook
    • Proceedings of the Korean Society of Embryo Transfer Conference
    • /
    • 2003.10a
    • /
    • pp.9-19
    • /
    • 2003
  • Pig organ is thought to be the most suitable nonhuman organ for xenotransplanstation. However, one of the major constraints to using pig organs for xenotransplantation is human natural antibody-mediated hyperacute rejection (HAR). Elimination of a(1,3) galactosyltransferase (GGTA1) from the pig is expected to be a solution to the problem of hyperacute rejection. ry1any efforts have made characterization of GGTA1 in structure and function. improvement in the technique of DNA transfection of somatic cells and advancement of the pig NT, a specific modification has been made to one copy of the GGTA1 gene by Missouri group in 2002. To date because homozygousity of the genetic modification has been achieved in this gene, the role of gala(1,3) gal specific natural antibody in HAR and the efficacy of xenotransplantation in a nonhuman primate model will be addressed. If other genes are found to be involved in rejection of pig donors by primates, the technology will be available to modify those genes so that rejection can be overcome.

  • PDF

Nutrigenomics Approach-A Strategy for Identification of Nutrition Responsive Genes Influencing Meat Edible Quality Traits in Swine

  • Yin, Jingdong;Li, Defa
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.4
    • /
    • pp.605-610
    • /
    • 2009
  • In the last 20 years, meat quality, especially meat edible quality has become a more intriguing topic in the field of swine production. In this paper, we briefly review the progress of meat quality research from the aspects of genetic selection and nutritional modulation, and propose a possible approach -nutrigenomics- to explore the nutrition-responsive major genes that affect meat quality formation during the growing and fattening of pigs.