• Title/Summary/Keyword: Genetic Factors

Search Result 1,682, Processing Time 0.033 seconds

Autophagy and Longevity

  • Nakamura, Shuhei;Yoshimori, Tamotsu
    • Molecules and Cells
    • /
    • v.41 no.1
    • /
    • pp.65-72
    • /
    • 2018
  • Autophagy is an evolutionally conserved cytoplasmic degradation system in which varieties of materials are sequestered by a double membrane structure, autophagosome, and delivered to the lysosomes for the degradation. Due to the wide varieties of targets, autophagic activity is essential for cellular homeostasis. Recent genetic evidence indicates that autophagy has a crucial role in the regulation of animal lifespan. Basal level of autophagic activity is elevated in many longevity paradigms and the activity is required for lifespan extension. In most cases, genes involved in autophagy and lysosomal function are induced by several transcription factors including HLH-30/TFEB, PHA-4/FOXA and MML-1/Mondo in long-lived animals. Pharmacological treatments have been shown to extend lifespan through activation of autophagy, indicating autophagy could be a potential and promising target to modulate animal lifespan. Here we summarize recent progress regarding the role of autophagy in lifespan regulation.

Update in the etiology and treatment of sexual precocity (사춘기 조숙증의 원인 및 치료의 최신지견)

  • Park, Mi Jung
    • Clinical and Experimental Pediatrics
    • /
    • v.49 no.7
    • /
    • pp.718-725
    • /
    • 2006
  • The pubertal activation of gonadotrophin releasing hormone(GnRH) requires coordinated changes in excitatory or inhibitory amino acids, growth factors, and a group of transcriptional regulators. The age of onset of puberty is progressing to younger age. Factors affecting early puberty include genetic traits, nutrition(body fat) and exposure to endocrine disrupting chemicals. In rapidly progressing central precocious puberty, gonadotrophin releasing hormone(GnRH) agonists(GnRHa) appear to increase final height if treated early stage. Further large scaled long-term follow-up study of the effects of GnRHa on final height is needed.

Immune Disorders and Its Correlation with Gut Microbiome

  • Hwang, Ji-Sun;Im, Chang-Rok;Im, Sin-Hyeog
    • IMMUNE NETWORK
    • /
    • v.12 no.4
    • /
    • pp.129-138
    • /
    • 2012
  • Allergic disorders such as atopic dermatitis and asthma are common hyper-immune disorders in industrialized countries. Along with genetic association, environmental factors and gut microbiota have been suggested as major triggering factors for the development of atopic dermatitis. Numerous studies support the association of hygiene hypothesis in allergic immune disorders that a lack of early childhood exposure to diverse microorganism increases susceptibility to allergic diseases. Among the symbiotic microorganisms (e.g. gut flora or probiotics), probiotics confer health benefits through multiple action mechanisms including modification of immune response in gut associated lymphoid tissue (GALT). Although many human clinical trials and mouse studies demonstrated the beneficial effects of probiotics in diverse immune disorders, this effect is strain specific and needs to apply specific probiotics for specific allergic diseases. Herein, we briefly review the diverse functions and regulation mechanisms of probiotics in diverse disorders.

Influences of Environmental Chemicals on Atopic Dermatitis

  • Kim, Kwangmi
    • Toxicological Research
    • /
    • v.31 no.2
    • /
    • pp.89-96
    • /
    • 2015
  • Atopic dermatitis is a chronic inflammatory skin condition including severe pruritus, xerosis, visible eczematous skin lesions that mainly begin early in life. Atopic dermatitis exerts a profound impact on the quality of life of patients and their families. The estimated lifetime prevalence of atopic dermatitis has increased 2~3 fold during over the past 30 years, especially in urban areas in industrialized countries, emphasizing the importance of life-style and environment in the pathogenesis of atopic diseases. While the interplay of individual genetic predisposition and environmental factors contribute to the development of atopic dermatitis, the recent increase in the prevalence of atopic dermatitis might be attributed to increased exposure to various environmental factors rather than alterations in human genome. In recent decades, there has been an increasing exposure to chemicals from a variety of sources. In this study, the effects of various environmental chemicals we face in everyday life - air pollutants, contact allergens and skin irritants, ingredients in cosmetics and personal care products, and food additives - on the prevalence and severity of atopic dermatitis are reviewed.

Recent advances in canola meal utilization in swine nutrition

  • Mejicanos, G.;Sanjayan, N.;Kim, I.H.;Nyachoti, C.M.
    • Journal of Animal Science and Technology
    • /
    • v.58 no.2
    • /
    • pp.7.1-7.13
    • /
    • 2016
  • Canola meal is derived from the crushing of canola seed for oil extraction. Although it has been used in swine diets for a long time, its inclusion levels have been limited due to concerns regarding its nutritive value primarily arising from results of early studies showing negative effects of dietary canola meal inclusion in swine diets. Such effects were attributable to the presence of anti-nutritional factors (ANF; notably glucosinolates) in canola meal. However, due to advances in genetic improvements of canola that have led to production of cultivars with significantly lower ANF content and improved processing procedures, canola meal with a superior nutritive value for non-ruminant animals is now available. Therefore, the aim of this paper is to review the recent studies in the use of canola meal as feedstuff for swine, the factors influencing its use and the strategies to overcome them. First a historical overview of the development of canola is provided.

Harmful Environmental Factors Leading to Attention-Deficit Hyperactivity Disorder (아동기 주의력결핍 과잉행동장애의 유해환경인자)

  • Kwon, Ho Jang;Ha, Mina;Kim, Bung Nyun;Lim, Myung Ho
    • Journal of the Korean Academy of Child and Adolescent Psychiatry
    • /
    • v.27 no.4
    • /
    • pp.267-277
    • /
    • 2016
  • Attention-deficit hyperactivity disorder (ADHD) is a common, childhood-onset, neuropsychiatric disorder with an estimated prevalence of 2-7.6% in Korean children. Although the etiology of ADHD is not well understood, evidence from genetic factor and environmental factor studies suggests that ADHD results from a gene environmental interaction. In the current study, we reviewed the evidence for and clinical implications of the hypothetical roles of organophosphate pesticides, organochlorine pesticides, polychlorinated biphenyls, phthalate, bisphenol, polyfluoroalkyl chemicals, polycyclic aromatic hydrocarbons, mercury, lead, arsenic, cadmium, manganese, tobacco, alcohol as harmful risk factors in the development of ADHD.

A mixed-effects model for overdispersed binomial data (초과변동의 이항자료에 대한 혼합효과 모형)

  • Choi, Jae-Sung
    • Journal of the Korean Data and Information Science Society
    • /
    • v.10 no.1
    • /
    • pp.199-205
    • /
    • 1999
  • This paper discusses the generalized mixed-effects model for the analysis of overdispersed binomial data. Sometimes certain types of sampling designs or genetic characters of experimental units can be regarded as factors of extra binomial variation. For such cases, this paper suggests models with one or two random effects to explain overdispersion caused by those affecting factors and shows how to test for a model adequacy based on deviance.

  • PDF

Relevance Epistasis Network of Gastritis for Intra-chromosomes in the Korea Associated Resource (KARE) Cohort Study

  • Jeong, Hyun-hwan;Sohn, Kyung-Ah
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.216-224
    • /
    • 2014
  • Gastritis is a common but a serious disease with a potential risk of developing carcinoma. Helicobacter pylori infection is reported as the most common cause of gastritis, but other genetic and genomic factors exist, especially single-nucleotide polymorphisms (SNPs). Association studies between SNPs and gastritis disease are important, but results on epistatic interactions from multiple SNPs are rarely found in previous genome-wide association (GWA) studies. In this study, we performed computational GWA case-control studies for gastritis in Korea Associated Resource (KARE) data. By transforming the resulting SNP epistasis network into a gene-gene epistasis network, we also identified potential gene-gene interaction factors that affect the susceptibility to gastritis.

How Environmental Agents Influence the Aging Process

  • Karol, Meryl H.
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.113-124
    • /
    • 2009
  • Aging is a multifaceted biological process that affects all organs and organ systems of the body. This review provides an up-to-date analysis of this highly exciting, rapidly changing field of science. The aging process is largely under genetic control but is highly responsive to diverse environmental influences. The genes that control aging are those that are involved with cell maintenance, cell damage and repair. The environmental factors that accelerate aging are those that influence either damage of cellular macromolecules, or interfere with their repair. Prominent among these are chronic inflammation, chronic infection, some metallic chemicals, ultraviolet light, and others that heighten oxidative stress. Other environment factors slow the aging process. Included among these agents are resveratrol and vitamin D. In addition, dietary restriction and exercise have been found to extend human lifespan. The various mechanisms whereby all these agents exert their influence on aging include epigenetic modification, chromatin maintenance, protection of telomeres, and anti-oxidant defense, among others. The complex process of aging remains under continued, intense investigation.

Dietary modulation of gut microbiota for the relief of irritable bowel syndrome

  • Kim, Mi-Young;Choi, Sang-Woon
    • Nutrition Research and Practice
    • /
    • v.15 no.4
    • /
    • pp.411-430
    • /
    • 2021
  • Irritable bowel syndrome (IBS) is a frequently diagnosed gastrointestinal (GI) disorder characterized by recurrent abdominal pain, bloating, and changes in the stool form or frequency without any structural changes and overt inflammation. It is not a life-threatening condition but causes a considerable level of discomfort and distress. Among the many pathophysiologic factors, such as altered GI motility, visceral hypersensitivity, and low-grade mucosal inflammation, as well as other immunologic, psychologic, and genetic factors, gut microbiota imbalance (dysbiosis), which is frequently found in IBS, has been highlighted as an etiology of IBS. Dysbiosis may affect gut mucosal homeostasis, immune function, metabolic regulation, and even visceral motor function. As diet is shown to play a fundamental role in the gut microbiota profile, this review discusses the influence of diet on IBS occurring through the modulation of gut microbiota. Based on previous studies, it appears that dietary modulation of the gut microbiota may be effective for the alleviation of IBS symptoms and, also an effective IBS management strategy based on the underlying mechanism; especially because, IBS currently has no specific treatment owing to its uncertain etiology.