• 제목/요약/키워드: Genetic Differentiation

검색결과 560건 처리시간 0.03초

Phospholipase Cγ의 생리적 기능과 질병과 연관된 돌연변이 (Physiological Roles of Phospholipase Cγ and Its Mutations in Human Disease)

  • 장현준;최장현;장종수
    • 생명과학회지
    • /
    • 제30권9호
    • /
    • pp.826-833
    • /
    • 2020
  • Phospholipase C gamma (PLCγ)는 phosphatidylinositol을 가수분해하여 신호전달 과정에 참여하는 PLC의 주요한 isotype으로 γ-specific array의 특징적인 구조를 바탕으로 receptor tyrosine kinases 및 non-receptor tyrosine kinase 신호를 주로 매개한다. PLCγ1과 PLCγ2의 두 isozyme이 존재하며 다양한 세포에서 발현하여 cell proliferation, migration 및 differentiation 등 여러 세포작용을 조절하고 있다. 최근의 연구들에서 PLCγ 돌연변이가 cancer와 immune disease 및 brain disorder 등에 연관된다는 것이 밝혀지고 있으며 genetic model을 통해 PLCγ의 생리적·병리적 기능이 제시되었다. 본 리뷰에서는 최신의 연구 결과들을 바탕으로 PLCγ의 구조와 활성 조절 기전에 대해 기술하고 나아가 여러 질병의 발병과 진행에서 보고된 PLCγ의 돌연변이와 knockout 마우스를 활용한 연구 결과를 바탕으로 생리적·병리적 관점에서 PLCγ의 역할에 대해 고찰하였다.

Biological Activity of Recombinant Human Erythropoietin (EPO) In Vivo and In Vitro

  • Park Jong-Ju;Lee Hyen-Gi;Nam In-Suk;Park Hee-Ja;Kim Min-Su;Chung Yun-Hi;Naidansuren Purevjargal;Kang Hye-Young;Lee Poong-Yun;Park Jin-Gi;Seong Hwan-Hoo;Chang Won-Kyong;Kang Myung-Hwa
    • Reproductive and Developmental Biology
    • /
    • 제29권2호
    • /
    • pp.69-73
    • /
    • 2005
  • The hematopoietic growth factor erythropoietin (EPO) is required for the maintenance, proliferation, and differentiation of the stem cells that produce erythrocytes. To analyse the biological activity of the recombinant human EPO (rec-hEPO), we have cloned the EPO cDNA and genomic DNA and produced rec-hEPO in the CHO cell lines. The growth and differentiation of EPO-dependent human leukemic cell line (F36E) were used to measure cytokine dependency and in vitro bioactivity of rec-hEPO. MIT assay values were increased by survival of F36E cells at 24h or 72h. The hematocrit and RBC values were increased by subcutaneous injection of 20 IU (in mice) and 100IU(in rats) rec-hEPO. Hematocrit values remarkably increased at $13.2\%$ (in mice) and $12.2\%$ (in rats). The pharmacokinetic behavior with injection of 6 IU of rec-hEPO remained detectable after 24 h in all mice tested. The highest peat appeared at 2h after injection. The long half-life of rec-hEPO is likely to confer clinical advantages by allowing less frequent dosing in patients treated for anemia. These data demonstratethat ree-hEPO produced in this study has a potent activity in vivo and in vitro. The results also suggest that biological activity of ree-hEPO could be remarkably enhanced by genetic engineering that affects the potential activity, including mutants with added oligosaccharide chain and designed to produce EPO-EPO fusion protein.

Association of the Porcine Cluster of Differentiation 4 Gene with T Lymphocyte Subpopulations and Its Expression in Immune Tissues

  • Xu, Jingen;Liu, Yang;Fu, Weixuan;Wang, Jiying;Wang, Wenwen;Wang, Haifei;Liu, Jianfeng;Ding, Xiangdong;Zhang, Qin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • 제26권4호
    • /
    • pp.463-469
    • /
    • 2013
  • Cluster of differentiation 4 (CD4) is mainly expressed on $CD4^+$ T cells, which plays an important role in immune response. The aim of this study was to detect the association between polymorphisms of the CD4 gene and T lymphocyte subpopulations in pigs, and to investigate the effects of genetic variation on the CD4 gene expression level in immune tissues. Five missense mutations in the CD4 gene were identified using DNA pooling sequencing assays, and two main haplotypes (CCTCC and AGCTG) in strong linkage disequilibrium (with frequencies of 50.26% and 46.34%, respectively) were detected in the population of Large White pigs. Our results indicated that the five SNPs and the two haplotypes were significantly associated with the proportions of $CD4^-CD8^-$, $CD4^+CD8^+$, $CD4^+CD8^-$, $CD4^+$ and $CD4^+/CD8^+$ in peripheral blood (p<0.05). Gene expression analysis showed the mRNA level of the CD4 gene in thymus was significantly higher than that in lymph node and spleen (p<0.05). However, no significant difference was observed between animals with CCTCC/CCTCC genotype and animals with AGCTG/AGCTG genotype in the three immune tissues (p>0.05). These results indicate that the CD4 gene may influence T lymphocyte subpopulations and can be considered as a candidate gene affecting immunity in pigs.

Sensing the Stress: the Role of the Stress-activated p38/Hog1 MAPK Signalling Pathway in Human Pathogenic Fungus Cryptococcus neoformans

  • Bahn, Yong-Sun;Heitman, Joseph
    • 한국미생물학회:학술대회논문집
    • /
    • 한국미생물학회 2007년도 International Meeting of the Microbiological Society of Korea
    • /
    • pp.120-122
    • /
    • 2007
  • All living organisms use numerous signal-transduction pathways to sense and respond to their environments and thereby survive and proliferate in a range of biological niches. Molecular dissection of these signalling networks has increased our understanding of these communication processes and provides a platform for therapeutic intervention when these pathways malfunction in disease states, including infection. Owing to the expanding availability of sequenced genomes, a wealth of genetic and molecular tools and the conservation of signalling networks, members of the fungal kingdom serve as excellent model systems for more complex, multicellular organisms. Here, we employed Cryptococcus neoformans as a model system to understand how fungal-signalling circuits operate at the molecular level to sense and respond to a plethora of environmental stresses, including osmoticshock, UV, high temperature, oxidative stress and toxic drugs/metabolites. The stress-activated p38/Hog1 MAPK pathway is structurally conserved in many organisms as diverse as yeast and mammals, but its regulation is uniquely specialized in a majority of clinical Cryptococcus neoformans serotype A and D strains to control differentiation and virulence factor regulation. C. neoformans Hog1 MAPK is controlled by Pbs2 MAPK kinase (MAPKK). The Pbs2-Hog1 MAPK cascade is controlled by the fungal "two-component" system that is composed of a response regulator, Ssk1, and multiple sensor kinases, including two-component.like (Tco) 1 and Tco2. Tco1 and Tco2 play shared and distinct roles in stress responses and drug sensitivity through the Hog1 MAPK system. Furthermore, each sensor kinase mediates unique cellular functions for virulence and morphological differentiation. We also identified and characterized the Ssk2 MAPKKK upstream of the MAPKK Pbs2 and the MAPK Hog1 in C. neoformans. The SSK2 gene was identified as a potential component responsible for differential Hog1 regulation between the serotype D sibling f1 strains B3501 and B3502 through comparative analysis of their meiotic map with the meiotic segregation of Hog1-dependent sensitivity to the fungicide fludioxonil. Ssk2 is the only polymorphic component in the Hog1 MAPK module, including two coding sequence changes between the SSK2 alleles in B3501 and B3502 strains. To further support this finding, the SSK2 allele exchange completely swapped Hog1-related phenotypes between B3501 and B3502 strains. In the serotype A strain H99, disruption of the SSK2 gene dramatically enhanced capsule biosynthesis and mating efficiency, similar to pbs2 and hog1 mutations. Furthermore, ssk2, pbs2, and hog1 mutants are all hypersensitive to a variety of stresses and completely resistant to fludioxonil. Taken together, these findings indicate that Ssk2 is the critical interface protein connecting the two-component system and the Pbs2-Hog1 pathway in C. neoformans.

  • PDF

Genetic Control of Asexual Sporulation in Fusarium graminearum

  • Son, Hokyoung;Kim, Myung-Gu;Chae, Suhn-Kee;Lee, Yin-Won
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.15-15
    • /
    • 2014
  • Fusarium graminearum (teleomorph Gibberella zeae) is an important plant pathogen that causes head blight of major cereal crops such as wheat, barley, and rice, as well as causing ear and stalk rot on maize worldwide. Plant diseases caused by this fungus lead to severe yield losses and accumulation of harmful mycotoxins in infected cereals [1]. Fungi utilize spore production as a mean to rapidly avoid unfavorable environmental conditions and to amplify their population. Spores are produced sexually and asexually and their production is precisely controlled. Upstream developmental activators consist of fluffy genes have been known to orchestrate early induction of condiogenesis in a model filamentous fungus Aspergillus nidulans. To understand the molecular mechanisms underlying conidiogenesis in F. graminearum, we characterized functions of the F. graminearum fluffy gene homologs [2]. We found that FlbD is conserved regulatory function for conidiogenesis in both A. nidulans and F. graminearum among five fluffy gene homologs. flbD deletion abolished conidia and perithecia production, suggesting that FlbD have global roles in hyphal differentiation processes in F. graminearum. We further identified and functionally characterized the ortholog of AbaA, which is involved in differentiation from vegetative hyphae to conidia and known to be absent in F. graminearum [3]. Deletion of abaA did not affect vegetative growth, sexual development, or virulence, but conidium production was completely abolished and thin hyphae grew from abnormally shaped phialides in abaA deletion mutants. Overexpression of abaA resulted in pleiotropic defects such as impaired sexual and asexual development, retarded conidium germination, and reduced trichothecene production. AbaA localized to the nuclei of phialides and terminal cells of mature conidia. Successful interspecies complementation using A. nidulans AbaA and the conserved AbaA-WetA pathway demonstrated that the molecular mechanisms responsible for AbaA activity are conserved in F. graminearum as they are in A. nidulans. F. graminearum ortholog of Aspergillus nidulans wetA has been shown to be involved in conidiogenesis and conidium maturation [4]. Deletion of F. graminearum wetA did not alter mycelial growth, sexual development, or virulence, but the wetA deletion mutants produced longer conidia with fewer septa, and the conidia were sensitive to acute stresses, such as oxidative stress and heat stress. Furthermore, the survival rate of aged conidia from the F. graminearum wetA deletion mutants was reduced. The wetA deletion resulted in vigorous generation of single-celled conidia through autophagy-dependent microcycle conidiation, indicating that WetA functions to maintain conidia dormancy by suppressing microcycle conidiation in F. graminearum. In A. nidulans, FlbB physically interacts with FlbD and FlbE, and the resulting FlbB/FlbE and FlbB/FlbD complexes induce the expression of flbD and brlA, respectively. BrlA is an activator of the AbaA-WetA pathway. AbaA and WetA are required for phialide formation and conidia maturation, respectively [5]. In F. graminearum, the AbaA-WetA pathway is similar to that of A. nidulans, except a brlA ortholog does not exist. Amongst the fluffy genes, only fgflbD has a conserved role for regulation of the AbaA-WetA pathway.

  • PDF

Discrimination of Panax ginseng Roots Cultivated in Different Areas in Korea Using HPLC-ELSD and Principal Component Analysis

  • Lee, Dae-Young;Cho, Jin-Gyeong;Lee, Min-Kyung;Lee, Jae-Woong;Lee, Youn-Hyung;Yang, Deok-Chun;Baek, Nam-In
    • Journal of Ginseng Research
    • /
    • 제35권1호
    • /
    • pp.31-38
    • /
    • 2011
  • In order to distinguish the cultivation area of Panax ginseng, principal component analysis (PCA) using quantitative and qualitative data acquired from HPLC was carried out. A new HPLC method coupled with evaporative light scattering detection (HPLC-ELSD) was developed for the simultaneous quantification of ten major ginsenosides, namely $Rh_1$, $Rg_2$, $Rg_3$, $Rg_1$, Rf, Re, Rd, $Rb_2$, Rc, and $Rb_1$ in the root of P. ginseng C. A. Meyer. Simultaneous separations of these ten ginsenosides were achieved on a carbohydrate analytical column. The mobile phase consisted of acetonitrile-water-isopropanol, and acetonitrile-water-isopropanol using a gradient elution. Distinct differences in qualitative and quantitative characteristics for ginsenosides were found between the ginseng roots produced in two different Korean cultivation areas, Ganghwa and Punggi. The ginsenoside profiles obtained via HPLC analysis were subjected to PCA. PCA score plots using two principal components (PCs) showed good separation for the ginseng roots cultivated in Ganghwa and Punggi. PC1 influenced the separation, capturing 43.6% of the variance, while PC2 affected differentiation, explaining 18.0% of the variance. The highest contribution components were ginsenoside $Rg_3$ for PC1 and ginsenoside Rf for PC2. Particularly, the PCA score plot for the small ginseng roots of six-year old, each of which was light than 147 g fresh weight, showed more distinct discrimination. PC1 influenced the separation between different sample sets, capturing 51.8% of the variance, while PC2 affected differentiation, also explaining 28.0% of the variance. The highest contribution component was ginsenoside Rf for PC1 and ginsenoside $Rg_2$ for PC2. In conclusion, the HPLC-ELSD method using a carbohydrate column allowed for the simultaneous quantification of ten major ginsenosides, and PCA analysis of the ginsenoside peaks shown on the HPLC chromatogram would be a very acceptable strategy for discrimination of the cultivation area of ginseng roots.

전암성 폐병변 및 편평상피세포폐암 조직에서 CBP(cAMP-responsive Ele-ment Binding Protein) 전사 공동 활성인자의 면역조직화학적 발현양상의 비교 (Comparison of Immunohistochemical Expression of CBP(cAMP-responsive Element Binding Protein) Transcriptional Co-activator between Premalignant Lesions and Squamous Cell Carcinomas in the Lungs)

  • 신종욱;김진수;김미경
    • Tuberculosis and Respiratory Diseases
    • /
    • 제63권2호
    • /
    • pp.165-172
    • /
    • 2007
  • 폐암의 발생은 여러 많은 유전자의 변화가 축적되어 나타나는 일련의 과정에 의한다. 세포 내 전사 조절 인자의 하나인 CBP는 폐를 포함한 인체 내 여러 조직에서 상피세포의 분화 및 증식에 중요한 역할을 담당하며, 유전자들에서 전사조절인자로서 세포의 성장에 관여하며 발암 과정에서도 중요할 것으로 기대된다. 이에 아직까지 폐암에서 CBP에 대한 연구가 확정된 바가 없어, 폐의 전암성 병변(상피 화생 20예, 이형성증 40예) 및 편평상피세포폐암 60예를 대상으로 하여 CBP의 발현정도를 면역화학적 방법으로 비교 분석하여 다음과 같은 결과를 얻었다. 1) 화생성 병변(7예; 35%)에 비해 이형성 병변(26례; 65%)이나 편평세포암종(42례; 70%)에서 CBP의 발현이 유의하게 높았다(p<0.05). 2) 이형성 병변의 경우, 경도의 이형성 병변(20예 중 10예; 50%)보다 고도의 이형성 병변(20예 중 16예; 80%)에서 높은 CBP의 발현율을 보였다(p<0.01). 3) 편평세포암의 분화도별로 살펴보았을 때, 고분화암에서 95%(20예 중 19예), 중등도 분화암에서 85%(20예 중 17예), 저분화 암에서는 30%(20예 중 6예)의 발현율을 보였다(p<0.05). 이상과 같은 결과를 볼 때, CBP는 폐 조직에서 정상 기관지 상피 세포가 전암성 병변으로 변하거나 전암성 병변이 암으로 진행하는 과정에서 중요한 역할을 하는 것으로 보이며, 세포가 암으로의 발전할 수 있는 잠재성을 가늠하는 표지자가 될 수 있을 것으로 보인다.

Ginsenoside fractions regulate the action of monocytes and their differentiation into dendritic cells

  • Lee, Yeo Jin;Son, Young Min;Gu, Min Jeong;Song, Ki-Duk;Park, Sung-Moo;Song, Hyo Jin;Kang, Jae Sung;Woo, Jong Soo;Jung, Jee Hyung;Yang, Deok-Chun;Han, Seung Hyun;Yun, Cheol-Heui
    • Journal of Ginseng Research
    • /
    • 제39권1호
    • /
    • pp.29-37
    • /
    • 2015
  • Background: Panax ginseng (i.e., ginseng) root is extensively used in traditional oriental medicine. It is a modern pharmaceutical reagent for preventing various human diseases such as cancer. Ginsenosidesd-the major active components of ginsengd-exhibit immunomodulatory effects. However, the mechanism and function underlying such effects are not fully elucidated, especially in human monocytes and dendritic cells (DCs). Methods: We investigated the immunomodulatory effect of ginsenosides from Panax ginseng root on $CD14^+$ monocytes purified from human adult peripheral blood mononuclear cells (PBMCs) and on their differentiation into DCs that affect $CD4^+$ T cell activity. Results: After treatment with ginsenoside fractions, monocyte levels of tumor necrosis factor (TNF)-${\alpha}$, interleukin (IL)-6, and IL-10 increased through phosphorylation of extracellular signal-regulated kinase (ERK)1/2 and c-Jun N-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK). After treatment with ginsenoside fractions, TNF-${\alpha}$ production and phosphorylation of ERK1/2 and JNK decreased in lipopolysaccharide (LPS)-sensitized monocytes.We confirmed that DCs derived from $CD14^+$ monocytes in the presence of ginsenoside fractions (Gin-DCs) contained decreased levels of the costimulatory molecules CD80 and CD86. The expression of these costimulatory molecules decreased in LPS-treated DCs exposed to ginsenoside fractions, compared to their expression in LPS-treated DCs in the absence of ginsenoside fractions. Furthermore, LPS-treated Gin-DCs could not induce proliferation and interferon gamma (IFN-${\gamma}$) production by $CD4^+$ T cells with the coculture of Gin-DCs with $CD4^+$ T cells. Conclusion: These results suggest that ginsenoside fractions from the ginseng root suppress cytokine production and maturation of LPS-treated DCs and downregulate $CD4^+$ T cells.

Cytochrome c oxidase subunit 1과 RAPD 분석에 의한 한국 전복속의 계통 연구 (Phylogenetic Study of Genus Haliotis in Korea by Cytochrome c Oxidase Subunit 1 and RAPD Analysis)

  • 서용배;강성철;최성석;이종규;정태혁;임한규;김군도
    • 생명과학회지
    • /
    • 제26권4호
    • /
    • pp.406-413
    • /
    • 2016
  • 전복은 전복속(Haliotis)에 속하며 전 세계적으로 식품산업에서 중요한 복족류 연체동물이다. 우리나라에는 6개종; 북방전복(Haliotis discus hannai), 둥근전복(Haliotis discus discus), 왕전복(Haliotis madaka), 말전복(Haliotis gigantea), 오분자기(Haliotis diversicolor diversicolor), 마대오분자기(Haliotis diversicolor supertexta)가 보고되어 있다. 이 연구에서는 우리나라 해역에 서식하는 중ㆍ대형 전복과 4종인 북방전복, 둥근전복, 왕전복, 말전복의 유전학적 유연관계를 분석하기 위하여 미토콘드리아의 cytochrome c oxidase subunit I (COI) 유전자와 Random Amplified Polymorphic DNA (RAPD) 분석법을 실시 하였다. 본 연구의 결과 COI 유전자 분석과 RAPD 분석을 활용하면 4종의 전복 중 북방전복, 둥근전복, 왕전복을 한 그룹으로 나머지 한 그룹을 말전복으로 구분하는 종 분류는 명확히 구분할 수 있었다. 이러한 결과는 전복 교잡육종을 이용한 수출용 전복 신종자 개발에 있어 주요 대상종인 전복과 4종에 대한 유전적 근연 관계를 규정함으로써 향후 교잡육종 연구의 기초 자료를 제공할 수 있을 것으로 사료된다.

전립선암세포에 있어서 폴리아민에 의한 칼슘신호와 세포사멸 (Polyamine Induces Apoptosis Through the Calcium Signaling in Human Prostate Cancer Cells)

  • 송휘준;김지영;유미애;정해영;김종민;김병기
    • 생명과학회지
    • /
    • 제16권3호
    • /
    • pp.433-441
    • /
    • 2006
  • 폴리아민은 거의 모든 세포에 있어서 성장과 분화에 필수적인 물질이다. 이들 폴리아민의 기작은 상당히 복잡하고 다양하여 그 정확한 작용기전은 아직 확실하지가 않다. 본 논문에서는 폴리아민이 세포 증식을 유도 하기도 하지만 일정농도 이상에서는 오히려 세포사멸을 초래한다는 결과를 밝히고자 한다. 본 실험에 사용된 인간의 전립선 암세포(LNCaP cells)에 있어서, 폴리아민 가운데 putrescien은 세포 증식에 거의 영향을 미치지 않았으나 spermidine과 spermine의 경우 10 ${\mu}M$ 이하에서는 세포 증식을 촉진하였다. 그러나, 20 ${\mu}M$ 이상의 농도에서는 농도와 시간의존적으로 세포사별을 유도 하였다. 폴리아민 처리에 의한 세포사멸의 초기과정인 핵 응축과 염색질 condensation이 Hoechst와 PI 염색에서 뚜렷이 관찰되었다. 또한, 폴리아민 처리시 anti-apoptotic protein으로 알려진 Bcl-2 protein의 발현은 거의 완전히 억제된 반면, pro-apoptotic protein으로 알려진 Bax의 발현은 현저히 증대되었다. 본 연구의 결과에 따르면, 폴리아민에 의해서 유도되는 세포사멸은 세포 내 칼슘농도 변화에 의한 것으로 사료된다. 전립선 암세포에 있어서 폴리아민 처리시 시간과 농도 의존적으로 세포 내 칼슘농도가 증가되었다. 세포막을 통한 칼슘이동을 억제하는 nifedipine과 flufenamic acid 등의 억제제를 처리한 실험 결과 세포내 칼슘증가는 세포 내부의 저장소로부터 칼슘의 유출보다는 주로 세포막상에 있는 비선택적 칼슘통로를 통한 외부의 칼슘 유입에 의한 것으로 판단된다.