• Title/Summary/Keyword: Genetic Differentiation

Search Result 554, Processing Time 0.027 seconds

Overexpression of FGFR3 mRNA and Mutational Analysis of FGFR3 Gene in Hepatocellular Carcinoma (간암에서 FGFR3 mRNA의 과발현과 FGFR3 유전자의 돌연변이 분석)

  • Chang, Young Gyoon;Bae, Hyun Jin;Nam, Suk Woo
    • YAKHAK HOEJI
    • /
    • v.56 no.6
    • /
    • pp.352-357
    • /
    • 2012
  • FGFR3 is a member of the fibroblast growth factor receptor family which interacts with fibroblast growth factors, setting in motion a cascade of downstream signals, ultimately influencing mitogenesis and differentiation. This particular family member binds acidic and basic fibroblast growth hormone and plays a role in bone development and maintenance. Accumulated evidence suggests that aberrant regulation of FGFR3 and genetic alterations are implicated in the development and progression of various cancers. Despite a high incidence of FGFR3 over-expression, no such investigation has been performed in hepatocellular carcinoma. Thus, we investigated genetic alterations of the FGFR3 gene in 73 cases of hepatocellular carcinoma by single-strand conformational polymorphism (SSCP) and sequencing. One silent mutation (A369A) was found in the extracellular domain of FGFR3, and one genetic alteration in the immunoglobulin-like III domain of FGFR3 appeared to be polymorphism. Taken together, we concluded that over-expression of FGFR3 in hepatocellular carcinoma is not associated with genetic alterations of FGFR3 gene, and we suggest that there could be another underlying mechanism of aberrant FGFR3 expression in hepatocellular carcinoma.

Genetic structure of wild brown sole inferred from mitochondrial DNA analysis

  • Kim, Sang-Gyu;Morishima, Kagayaki;Arai, Katsutoshi
    • Animal cells and systems
    • /
    • v.14 no.3
    • /
    • pp.197-206
    • /
    • 2010
  • The population structure of brown sole was examined in a total of 308 samples collected from three geographical groups: one locality (Gangneung) on the east side of the Korean Peninsula, two localities (Erimo and Tomakomai) on the southeastern side and four localities (Onishika, Teshio, Tomamae and Yoichi) on the northwestern side of Hokkaido Island, Japan, by using sequences of 484 bp from the 5' end of the control region of mtDNA. We detected 225 haplotypes, but 183 of them were unique to an individual. A total of 116 nucleotide sites were variable. Haplotype diversity (h) was very high, ranging from 0.989 to 1.000, and nucleotide diversity (${\pi}$) was detected between 0.015 and 0.022. Genetic distances (${\Phi}_{ST}$) within populations, among populations and among geographical groups were low (0.0002 to 0.0014). No significant difference was detected by the AMOVA test (P < 0.05). Pairwise $F_{ST}$ values between sampling localities were also low and not significant. Genetic differentiation was not detected among sampling localities.

Genetic Diversity and Characterization of DPE1 Gene in Rice Germplasm

  • Aueangporn Somsri;Yong-Jin Park
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.220-220
    • /
    • 2022
  • Disproportionating Enzyme 1 (DPE1) is an a-1,4-D-glucanotransferase that cleavages the a-1,4-glucosidic bonds and transfers glucosyl groups. In rice endosperm, it participates in starch synthesis by transferring maltooligosyl groups from amylose and amylopectin to amylopectin. Here, we investigated the haplotype variations and evolutionary indices (e.g., genetic diversity and population structure) for the DPE1 gene in 374 rice accessions representing seven subgroups (wild, indica, temperate japonica, tropical japonica, aus, aromatic, and admixture). Variant calling analysis of DPE1 coding regions leads to the identification of six functional haplotypes representing/occupying 8 nonsynonymous SNPs. Nucleotide diversity analysis revealed the highest pi-value in wild group (0.0556) compared to other cultivated groups, of which temperate japonica showed the most reduction of genetic diversity value (0.003). A significant positive Tajima's D value (1.6330) of admixture highlights sudden population contraction under balancing selection, while temperate japonica with the lowest Tajima's D value (-1.3523) showed a selection signature of DPE1 domestication which might be the cause of excess of rare alleles. Moreover, these two subpopulations exhibits a greater differentiation (FST=0.0148), indicating a higher genetic diversity. Our findings on functional DPE1 haplotypes will be useful in future breeding programs, and the evolutionary indices can also be applicable in functional studies of the DPE1 gene.

  • PDF

Functional analysis of Bombyx mori Decapentaplegic gene for bone differentiation in a mammalian cell

  • Park, Seung-Won;Goo, Tae-Won;Choi, Gwang-Ho;Kang, Seok-Woo;Kim, Sung-Wan;Kim, Seong-Ryul
    • International Journal of Industrial Entomology and Biomaterials
    • /
    • v.27 no.1
    • /
    • pp.159-165
    • /
    • 2013
  • Bone morphogenetic proteins (BMPs) belong to the transforming growth factor (TGF-${\beta}$) superfamily and are involved in osteoblastic differentiation. The largest TGF-${\beta}$ superfamily subgroup shares genetic homology with human BMPs (hBMPs) and silkworm decapentaplegic (dpp). In addition, hBMPs are functionally interchangeable with Drosophila dpp. Bombyx mori dpp may induce bone formation in mammalian cells. To test this hypothesis, we synthesized the 1,285-base pairs cDNA of full-length B. mori dpp using total RNAs obtained from the fat body of 3-day-old of the $5^{th}$ instar larvae and cloned the cDNA into the pCEP4 mammalian expression vector. Next, B. mori dpp was expressed in C3H10T1/2 cells. The target cells transfected with the pCEP4-Bm dpp plasmid showed biological functions similar to those of osteogenic differentiation induction growth factors such as hBMPs. We determined the relative mRNA expression rates of Runt-related transcription factor 2 (RUNX2), osterix, osteocalcin, and alkaline phosphatase (ALP) to validate the osteoblast-specific differentiation effects of B. mori dpp by performing quantitative real-time RT-PCR. Interestingly, mRNA expression levels of the 3 marker genes except RUNX2, in cells expressing B. mori dpp were much higher than those in control cells and C3H10T1/2 cells transfected with pCEP4. These results suggested that B. mori dpp signaling regulates osterix expression during osteogenic differentiation via RUNX2-independent mechanisms.

3-Hydrogenkwadaphnin Induces Monocytic Differentiation and Enhances Retinoic Acid-mediated Granulocytic Differentiation in NB4 Cell Line

  • Moosavi, Mohammad Amin;Yazdanparast, Razieh;Lotfi, Abbas
    • BMB Reports
    • /
    • v.39 no.6
    • /
    • pp.722-729
    • /
    • 2006
  • Recently, we have reported that 3-hydrogenkwadaphnin (3-HK), a diterpene ester isolated from Dendrostellera lessertii (Thymealeaceae), is very effective against leukemia cell lines without any detectable effects on normal cells (Moosavi et al., 2005b). In this study, we report that 3-HK induces $G_1$ cell-cycle arrest, differentiation and apoptosis in APL NB4 cell line. Indeed, the drug between 24 to 96 h induced 7-65% growth inhibition of NB4 cells. Cell viability was also decreased by 2-55% between 24 to 96 h treatments with the drug, respectively. These effects of the drug were also dose-dependent. According to flow cytomtry results, 3-HK (15 nM) induced a significant G1-arrest up to 24 h which was consequently followed with appearance of sub-$G_1$ peak at 72 to 96 h. Hoechst 33258 staining and DNA fragmentation assays confirmed the occurrence of apoptosis among the treated cells. On the other hand, NBT reducing assay, Wright-Giemsa staining, phagocytic activity and expression of cell surface markers (CD11b and CD14) confirmed that the inhibition of proliferation is associated with differentiation especially toward macrophage-like morphology. Interestingly, 3-HK at 5 and 10 nM enhanced the effects of all-trans retinoic acid (ATRA) in NB4 cells. Based on these results, 3-HK might become an ideal candidate for treatment of APL patients pending full exploration of its biological functions.

Antiobesity Effect of Mixture of Black Garlic and Garsinia cambogia Extracts in 3T3-L1 Adipocytes and L6 Skeletal Muscle Cells

  • Jung, Young-Mi;Lee, Dong-Sub;Lee, Seon-Ha;Jeoung, Nam-Ho;Kim, Bok-Jo
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.291-298
    • /
    • 2012
  • The antiobesity effect of the mixture of black garlic and Garsinia cambogia extracts (BGG) was investigated by measuring the Oil red O staining and the expressions of adipogenic genes during preadipocyte differentiation by real-time PCR in the 3T3-L1 adipocytes. BGG reduced contents of Oil red O dye in the 3T3-L1 adipocytes. mRNA expression levels of SREBP1c, C/EBPa, aP2/FABP4, and $PPAR{\gamma}$ which are adipogenic transcription factor, in cells treated with BGG were also significantly down regulated. Also, the phosphorylation of AMP-activated protein kinase (AMPK) in L6 cells was more increased by BGG. These results indicate that BGG seems to be more attractive compound for application of industry than individual extracts such as black garlic and Garsinia cambogia, considering it has two effects not only inhibit the preadipocyte differentiation but also activate the phosphorylation of AMPK unlike other two compound.

Postnatal Expression of Growth/Differentiation Factor-8 (GDF-8) Gene in European and Asian Pigs

  • Lin, C.S.;Wu, Y.C.;Sun, Y.L.;Huang, M.C.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.15 no.9
    • /
    • pp.1244-1249
    • /
    • 2002
  • Myostatin (growth differentiation factor (GDF)-8), is one member of the transforming growth factor $\beta$ superfamily. Investigations of GDF-8 null mice and double-muscled cattle revealed that GDF-8 has a profound influence upon skeletal muscle growth. Therefore, the GDF-8 effect upon the productive performance of pigs is worth exploring. In the present study, the nucleotide sequences and expression levels of GDF-8 genes in European pigs (Landrace and Duroc) and Asian pigs (Taoyuan and Small-ear) were evaluated. Based upon their genetic background these breeds possess significantly distinct growth rate and muscle productionphenotypes. Our sequence data showed that the nucleotide sequences of European and Asian pigs were 100% similar. Postnatal expression of GDF-8 gene in skeletal muscles, from birth to 12 mo of age, among different breeds was measured. GDF-8 expression levels in the longissimus muscle of neonatal European breed littermates were the highest, however it declined significantly (p<0.05) at 1 and 3 mo, and then increased gradually at 6 to 12 mo. The Asian breeds, however, GDF-8 expression level increased markedly at 3 mo and maintained a constant level thereafter. The results indicate that rather than polymorphism within the GDF-8 functional sequence between European and Asia breeds, it was relative to the gene regulation in postnatal muscle growth.

Epistatic Relationships of Two Regulatory Factors During Heterocyst Development

  • Kim, Young-Saeng;Kim, Il-Sup;Shin, Sun-Young;Kim, Hyun-young;Kang, Sung-Ho;Yoon, Ho-Sung
    • ALGAE
    • /
    • v.24 no.2
    • /
    • pp.85-91
    • /
    • 2009
  • The filamentous cyanobacterium Anabaena sp. Strain PCC 7120 produces a developmental patten of single hete- rocysts separated by approximately 10 vegetative cells. Heterocysts differentiate from vegetative cells and are spe- cialized for nitrogen fixation. The patS gene, which encodes a small peptide that inhibits heterocyst differentiation, is expressed in proheterocysts and plays a critical role in establishing the heterocyst pattem. Another key regulator of heterocyst development is the hetR gene. hetR mutants fail to produce heterocysts and extra copies of hetR on a plas- mid cause a multiple contiguous heterocyst phenotype. To elucidate the relationship between these two counter act- ing factors in the genetic regulatory pathway during heterocyst differentiation, the expression patterns of a patS-gfp and a hetR-gfp fusion were examined in a patS deletion and a hetR deletion strain. The results, in combination with the result from a hetR and patS double deletion strain, suggest patS and hetR are mutually antagonistic and the bal- ance between these two factors in tow different cell types (heterocysts and vegetative cells) may be critical during the decision making process on their cell fates.

Emerging role of Hippo pathway in the regulation of hematopoiesis

  • Inyoung Kim;Taeho Park;Ji-Yoon Noh;Wantae Kim
    • BMB Reports
    • /
    • v.56 no.8
    • /
    • pp.417-425
    • /
    • 2023
  • In various organisms, the Hippo signaling pathway has been identified as a master regulator of organ size determination and tissue homeostasis. The Hippo signaling coordinates embryonic development, tissue regeneration and differentiation, through regulating cell proliferation and survival. The YAP and TAZ (YAP/TAZ) act as core transducers of the Hippo pathway, and they are tightly and exquisitely regulated in response to various intrinsic and extrinsic stimuli. Abnormal regulation or genetic variation of the Hippo pathway causes a wide range of human diseases, including cancer. Recent studies have revealed that Hippo signaling plays a pivotal role in the immune system and cancer immunity. Due to pathophysiological importance, the emerging role of Hippo signaling in blood cell differentiation, known as hematopoiesis, is receiving much attention. A number of elegant studies using a genetically engineered mouse (GEM) model have shed light on the mechanistic and physiological insights into the Hippo pathway in the regulation of hematopoiesis. Here, we briefly review the function of Hippo signaling in the regulation of hematopoiesis and immune cell differentiation.