• Title/Summary/Keyword: Genetic Coding

Search Result 367, Processing Time 0.026 seconds

Global Optimum Searching Technique of Multi-Modal Function Using DNA Coding Method (DNA 코딩을 이용한 multi-modal 함수의 최적점 탐색방법)

  • 백동화;강환일;김갑일;한승수
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2001.12a
    • /
    • pp.225-228
    • /
    • 2001
  • DNA computing has been applied to the problem of getting an optimal solution since Adleman's experiment. DNA computing uses strings with various length and four-type bases that makes more useful for finding a global optimal solutions of the complex multi-modal problems. This paper presents DNA coding method for finding optimal solution of the multi-modal function and compares the efficiency of this method with the genetic algorithms (GA). GA searches effectively an optimal solution via the artificial evolution of individual group of binary string and DNA coding method uses a tool of calculation or Information store with DNA molecules and four-type bases denoted by the symbols of A(Ademine), C(Cytosine), G(Guanine) and T(Thymine). The same operators, selection, crossover, mutation, are applied to the both DNA coding algorithm and genetic algorithms. The results show that the DNA based algorithm performs better than GA.

  • PDF

Development of Genetic Algorithm for Robust Control of Mobile Robot (모바일 로봇의 견실제어를 위한 제네틱 알고리즘 개발)

  • 김홍래;배길호;정경규;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.241-246
    • /
    • 2004
  • This paper proposed trajectory tracking control of mobile robot. Trajectory tracking control scheme are real coding genetic-algorithm and back-propergation algorithm. Control scheme ability experience proposed simulation. Stable tracking control problem of mobile robots have been studied in recent years. These studios have guaranteed stability of controller, but the performance of transient state has not been guaranteed. In some situations, constant gain controller shows overshoots and oscillations. So we introduce better control scheme using Real coding Genetic Algorithm(RCGA) and neural network. Using RCGA, we can find proper gains in several situations and these gains are generalized by neural network. The generalization power of neural network will give proper gain in untrained situation. Performance of proposed controller will verify numerical simulations and the results show better performance than constant gain controller.

  • PDF

Hybrid Multi-layer Perceptron with Fuzzy Set-based PNs with the Aid of Symbolic Coding Genetic Algorithms

  • Roh, Seok-Beom;Oh, Sung-Kwun;Ahn, Tae-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.155-157
    • /
    • 2005
  • We propose a new category of hybrid multi-layer neural networks with hetero nodes such as Fuzzy Set based Polynomial Neurons (FSPNs) and Polynomial Neurons (PNs). These networks are based on a genetically optimized multi-layer perceptron. We develop a comprehensive design methodology involving mechanisms of genetic optimization and genetic algorithms, in particular. The augmented genetically optimized HFPNN (namely gHFPNN) results in a structurally optimized structure and comes with a higher level of flexibility in comparison to the one we encounter in the conventional HFPNN. The GA-based design procedure being applied at each layer of HFPNN leads to the selection of preferred nodes (FPNs or PNs) available within the HFPNN. In the sequel, two general optimization mechanisms are explored. First, the structural optimization is realized via GAs whereas the ensuing detailed parametric optimization is carried out in the setting of a standard least square method-based learning. The performance of the gHFPNNs quantified through experimentation where we use a number of modeling benchmarks-synthetic and experimental data already experimented with in fuzzy or neurofuzzy modeling.

  • PDF

Structure Optimization of a Feedforward Neural Controller using the Genetic Algorithm (유전 알고리즘을 이용한 전방향 신경망 제어기의 구조 최적화)

  • 조철현;공성곤
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.33B no.12
    • /
    • pp.95-105
    • /
    • 1996
  • This paper presents structure optimization of a feedforward neural netowrk controller using the genetic algorithm. It is important to design the neural network with minimum structure for fast response and learning. To minimize the structure of the feedforward neural network, a genralization of multilayer neural netowrks, the genetic algorithm uses binary coding for the structure and floating-point coding for weights. Local search with an on-line learnign algorithm enhances the search performance and reduce the time for global search of the genetic algorithm. The relative fitness defined as the multiplication of the error and node functions prevents from premature convergence. The feedforward neural controller of smaller size outperformed conventional multilayer perceptron network controller.

  • PDF

A Study on a Real-Coded Genetic Algorithm (실수코딩 유전알고리즘에 관한 연구)

  • Jin, Gang-Gyoo;Joo, Sang-Rae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.4
    • /
    • pp.268-275
    • /
    • 2000
  • The increasing technological demands of today call for complex systems, which in turn involve a series of optimization problems with some equality or inequality constraints. In this paper, we presents a real-coded genetic algorithm(RCGA) as an optimization tool which is implemented by three genetic operators based on real coding representation. Through a lot of simulation works, the optimum settings of its control parameters are obtained on the basis of global off-line robustness for use in off-line applications. Two optimization problems are Presented to illustrate the usefulness of the RCGA. In case of a constrained problem, a penalty strategy is incorporated to transform the constrained problem into an unconstrained problem by penalizing infeasible solutions.

  • PDF

Optimum Design of Torsional Shafting Using Real-Coded Genetic Algorithm (실수코딩 유전알고리즘을 이용한 비틀림 축계의 최적설계)

  • 최명수;문덕홍;설종구
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.284-290
    • /
    • 2003
  • It is very important to minimize the weight of shaft from the viewpoint of economics and manufacture. For minimizing effectively the diameter of shaft in torsional shafting, authors developed computer program using the real-coded genetic algorithm which is one of optimizing techniques and based on real coding representation of genetic algorithm. In order to confirm the accuracy and effectiveness of the developed computer program, the computational results by the developed program were compared with those of conventional strength, stiffness and vibration designs for a generator shafting.

Genetic Diversity of Barley Cultivars as Revealed by SSR Masker

  • Kim, Hong-Sik;Park, Kwang-Geun;Baek, Seong-Bum;Suh, Sae-Jung;Nam, Jung-Hyun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.5
    • /
    • pp.379-383
    • /
    • 2002
  • Allelic diversity of 44 microsatellite marker loci originated from the coding regions of specific genes or the non-coding regions of barley genome was analyzed for 19 barley genotypes. Multi-allelic variation was observed at the most of marker loci except for HVM13, HVM15, HVM22, and HVM64. The number of different alleles ranged from 2 to 12 with a mean of 4.0 alleles per micro-satellite. Twenty-one alleles derived from 10 marker loci are specific for certain genotypes. The level of polymorphism (Polymorphic Information Content, PIC) based on the band pattern frequencies among genotypes was relatively high at the several loci such as HVM3, HVM5, HVM14, HVM36, HVM62 and HVM67. In the cluster analysis using genetic similarity matrix calculated from microsatellite-derived DNA profiles, two major groups were classified and the spike-row type was a major factor for clustering. Correlation between genetic similarity matrices based on microsatellite markers and pedigree data was highly significant ($r=0.57^{**}$), but these two parameters were moderately associated each other. On the other hand, RAPD-based genetic similarity matrix was more highly associated with microsatellite-based genetic similarity ($r=0.63^{**}$) than coefficient of parentage.

Design of an Intelligent Controller of Mobile Robot Using Genetic Algorithm (제네틱 알고리즘을 이용한 이동로봇의 지능제어기 설계)

  • 정동연;김종수;한성현
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.207-212
    • /
    • 2003
  • This paper proposed trajectory tracking control of Mobile Robot. Trajectory tracking control scheme are Real coding Genetic-Algorithm and Back-propergation Algorithm. Control scheme ability experience proposed simulation.

  • PDF

BcSNPdb: Bovine Coding Region Single Nucleotide Polymorphisms Located Proximal to Quantitative Trait Loci

  • Moon, Sun-Jin;Shin, Hyoung-Doo;Cheong, Hyun-Sub;Cho, Hye-Young;NamGoong, Sohg;Kim, Eun-Mi;Han, Chang-Su;Sung, Sam-Sun;Kim, Hee-Bal
    • BMB Reports
    • /
    • v.40 no.1
    • /
    • pp.95-99
    • /
    • 2007
  • Bovine coding region single nucleotide polymorphisms located proximal to quantitative trait loci were identified to facilitate bovine QTL fine mapping research. A total of 692,763 bovine SNPs was extracted from 39,432 UniGene clusters, and 53,446 candidate SNPs were found to be a depth >3. In order to validate the in silico SNPs experimentally, 186 animals representing 14 breeds and 100 mixed breeds were analyzed. Genotyping of 40 randomly selected candidate SNPs revealed that 43% of these SNPs ranged in frequency from 0.009 to 0.498. To identify non-synonymous SNPs and to correct for possible frameshift errors in the ESTs at the predicted SNP positions, we designed a program that determines coding regions by protein-sequence referencing, and identified 17,735 nsSNPs. The SNPs and bovine quantitative traits loci informations were integrated into a bovine SNP data: BcSNPdb (http://snugenome.snu.ac.kr/BtcSNP/). Currently there are 43 different kinds of quantitative traits available. Thus, these SNPs would serve as valuable resources for exploiting genomic variation that influence economically and agriculturally important traits in cows.