Won, So Youn;Kim, Jung Sun;Kang, Sang-Ho;Sohn, Seong-Han
Journal of Plant Biotechnology
/
v.43
no.3
/
pp.272-280
/
2016
Chrysanthemum is one of the top floriculture species with ornamental and medicinal value. Although chrysanthemum breeding program has contributed to the development of various cultivars so far, it needs to be advanced from the traditional phenotype-based selection to marker-assisted selection (molecular breeding) as shown in major cereal and vegetable crops. Molecular breeding relies on trait-linked molecular markers identified from genetic, molecular, and genomic studies. However, these studies in chrysanthemum are significantly hampered by the reproductive, genetic, and genomic properties of chrysanthemum such as self-incompatibility, inbreeding depression, allohexaploid, heterozygosity, and gigantic genome size. Nevertheless, several genetic studies have constructed genetic linkage maps and identified molecular markers linked to important traits of flower, leaf, and plant architecture. With progress in sequencing technology, chrysanthemum transcriptome has been sequenced to construct reference gene set and identify genes responsible for developments or induced by biotic or abiotic stresses. Recently, a genome sequencing project has been launched on a diploid wild Chrysanthemum species. The massive sequencing information would serve as fundamental resources for molecular breeding of chrysanthemum. In this review, we summarized the current status of molecular genetics and genomics in chrysanthemum and briefly discussed future prospects.
The Journal of the Institute of Internet, Broadcasting and Communication
/
v.15
no.6
/
pp.115-121
/
2015
In this paper, we proposed an iterative data-flow optimal scheduling algorithm based on genetic algorithm for high-performance multiprocessor. The basic hardware model can be extended to include detailed features of the multiprocessor architecture. This is illustrated by implementing a hardware model that requires routing the data transfers over a communication network with a limited capacity. The scheduling method consists of three layers. In the top layer a genetic algorithm takes care of the optimization. It generates different permutations of operations, that are passed on to the middle layer. The global scheduling makes the main scheduling decisions based on a permutation of operations. Details of the hardware model are not considered in this layer. This is done in the bottom layer by the black-box scheduling. It completes the scheduling of an operation and ensures that the detailed hardware model is obeyed. Both scheduling method can insert cycles in the schedule to ensure that a valid schedule is always found quickly. In order to test the performance of the scheduling method, the results of benchmark of the five filters show that the scheduling method is able to find good quality schedules in reasonable time.
Generally, the environment we want to apply classifier system to is composed of several state spaces. So in this paper, we propose the layered classifier system having multifarious rule bases. From sensor's inputs, the lower layer of the layered classifier system learns strategies for each environmental state space. The higher layer learns how to allot each rule base of the strategy for environmental state space properly. To evaluate the proposed architecture of classifier system, we designed virtual environment having multifarious state spaces and from the analysis of the experimental results, we affirm that layered classifier system could find better strategies during a little time than other established classifier system's findings.
Proceedings of the Korea Water Resources Association Conference
/
2005.05b
/
pp.679-683
/
2005
The technique which connects Generalized Regression Neural Networks Model(GRNNM) with Genetic Algorithm (CA) is used to derive rating curve in the river basin. GRNNM architecture consists of 4 layers ; input, hidden, summation and output layer. GA method is applied to estimate the optimal smoothing factor when GRNNM is trained. The derivation of rating curve using GRNNM is considered different kinds of hydraulic characteristics such as water stage, area and mean velocity and is applied two stage stations; Sunsan and Jungam. Furthermore, it is compared with conventional curve-fitting method. Through the training and validation performance, the results show that GRNNM is much superior as compared to the conventional curve-fitting method.
The Journal of Korean Institute of Communications and Information Sciences
/
v.24
no.10B
/
pp.1832-1840
/
1999
This paper proposed a network to implement all optical bidirectional BLSR/4 WDM/SHR allowing restoration in the event of a failure. The proposed network can provide a high degree of transparency using all-optical components with no electric implementation and effective failure restoration due to BLSR/4 WDM/SHR architecture. This paper also presented a genetic simulation model for the survivability analysis of the proposed BLSR/4 WDM/SHR under failure scenarios, the restoration performance of the proposed network is analyzed in terms of performance parameters such as propagation time, processing time, optical switch time.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.6
no.4
/
pp.238-242
/
2013
We consider the problem of constructing observers for nonlinear systems with unknown inputs. Connectionist networks, also called neural networks, have been broadly applied to solve many different problems since McCulloch and Pitts had shown mathematically their information processing ability in 1943. In this thesis, we present a genetic neuro-control scheme for nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.6
no.4
/
pp.243-248
/
2013
In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.
Journal of the Korea Institute of Building Construction
/
v.12
no.6
/
pp.664-673
/
2012
Determining the layout of temporary facilities that support construction activities at a site is an important planning activity, as layout can significantly affect cost, quality of work, safety, and other aspects of the project. The construction site layout problem involves difficult combinatorial optimization. Recently, various artificial intelligence(AI)-based algorithms have been applied to solving many complex optimization problems, including neural networks(NN), genetic algorithms(GA), and swarm intelligence(SI) which relates to the collective behavior of social systems such as honey bees and birds. This study proposes a site facility layout optimization algorithm based on self-organizing maps(SOM). Computational experiments are carried out to justify the efficiency of the proposed method and compare it with particle swarm optimization(PSO). The results show that the proposed algorithm can be efficiently employed to solve the problem of site layout.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.04a
/
pp.442-445
/
2004
본 논문은 유전자 기반 퍼지다항식 뉴럴네트워크(Genetic based fuzzy polynomial neural networks: gFPNN)를 제안한다. gFPNN 구조는 퍼지집합을 기반으로 설계되며, 유전자 알고리즘에 의해 구조 및 파라미터를 최적화한 구조이다. 퍼지집합을 기반으로 설계되어진 퍼지뉴럴네트워크는 간략추론 구조와 선형추론 구조로 설계된다. 본 논문에서는 간략추론 및 선형추론 구조를 통합 및 확장한 퍼지다항식 뉴럴네트워크를 설계한다. 이 구조는 연결가중치를 이용하여 회귀다항식을 네트워크 구조로 표현하며, 간략추론(Type 0), 선형추론(Type 1), 회귀다항식추론(Type 2)을 모두 포함한다. 또한 퍼지규칙 후반부의 다항식 차수를 각 규칙에 대해 다르게 선택할 수 있으며, 일률적인 형식의 구조를 벗어나 주어진 시스템의 특성에 따라 유연한 구조를 설계할 수 있도록 한다. 여기에 더하여, 네트워크 구조와 파라미터 동조에 유전자 알고리즘을 적용하며, 구조와 파라미터 동정에 대한 효율적인 방법을 논의한다. 제안된 모델의 평가를 위해 수치예제를 이용한다.
Proceedings of the Korean Institute of Intelligent Systems Conference
/
2004.10a
/
pp.169-172
/
2004
유전 알고리듬은 NP-Hard 문제의 해결이나, 함수 최적화, 복잡한 제어기의 파라미터 값 추적 등, 광범위한 분야에 걸쳐 이용되고 있다 일반적인 유전 알고리듬은 적합도 함수를 통해 해들의 품질을 결정하고, 해들의 품질에 따라 선택 연산을 거쳐, 교차나 돌연변이를 통해 우수한 품질의 해를 찾는 과정을 가진다 현재 이 과정은 대부분 소프트웨어적으로 구현되어 범용 프로세서를 통해 수행된다. 그러나 높은 소프트웨어 의존성은 해집단의 크기가 커질수록 교차/변이 연산과 해들의 품질비교에 수행되는 시간을 크게 증가시키는 약점이 있다. 따라서 본 논문에서는 순위 기반 선택과 일점 교차(one-point crossover)를 사용한다는 제약하에, 해들의 순위를 정렬 네트워크를 통해 결정하고 해들을 Residue Number System(RNS)로 표현하여 하드웨어적으로 교차연산을 처리하는 프로세서 구조를 제안한다 이러한 접근을 통해 해들의 품질비교에 걸리는 시간을 크게 줄이고 교차/변이 연산의 효율을 높일 수 있다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.