DOI QR코드

DOI QR Code

Current status and prospects of chrysanthemum genomics

국화 유전체 연구의 동향

  • Won, So Youn (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kim, Jung Sun (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Kang, Sang-Ho (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration) ;
  • Sohn, Seong-Han (Genomics Division, Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration)
  • 원소윤 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과) ;
  • 김정선 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과) ;
  • 강상호 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과) ;
  • 손성한 (농촌진흥청 국립농업과학원 농업생명자원부 유전체과)
  • Received : 2016.03.30
  • Accepted : 2016.07.31
  • Published : 2016.09.30

Abstract

Chrysanthemum is one of the top floriculture species with ornamental and medicinal value. Although chrysanthemum breeding program has contributed to the development of various cultivars so far, it needs to be advanced from the traditional phenotype-based selection to marker-assisted selection (molecular breeding) as shown in major cereal and vegetable crops. Molecular breeding relies on trait-linked molecular markers identified from genetic, molecular, and genomic studies. However, these studies in chrysanthemum are significantly hampered by the reproductive, genetic, and genomic properties of chrysanthemum such as self-incompatibility, inbreeding depression, allohexaploid, heterozygosity, and gigantic genome size. Nevertheless, several genetic studies have constructed genetic linkage maps and identified molecular markers linked to important traits of flower, leaf, and plant architecture. With progress in sequencing technology, chrysanthemum transcriptome has been sequenced to construct reference gene set and identify genes responsible for developments or induced by biotic or abiotic stresses. Recently, a genome sequencing project has been launched on a diploid wild Chrysanthemum species. The massive sequencing information would serve as fundamental resources for molecular breeding of chrysanthemum. In this review, we summarized the current status of molecular genetics and genomics in chrysanthemum and briefly discussed future prospects.

국화는 관상용, 약용으로 활용되는 주요한 화훼 작물중의 하나이다. 국화의 육종 프로그램은 다양한 품종의 개발에 기여하였으나, 다른 주요한 식량, 채소작물에서 보여졌듯이 전통적인 표현형 기반의 품종선발에서 분자표지를 활용한 선발로 진일보할 필요가 있다. 이러한 분자육종은 유전학, 분자생물학, 최근에는 유전체 연구로 규명된 형질연관 분자표지에 의존한다. 그러나 자가불화합성, 자식약세, 이질육배체, 이형접합성, 거대한 유전체와 같은 국화의 생식적, 유전적, 유전체의 특성으로 인하여 이러한 연구는 심각하게 지연되고 있다. 그럼에도 불구하고 유전연구를 통하여 국화의 유전자지도가 구축되었고 꽃, 잎, 식물구조와 같은 국화의 주요한 형질과 연관된 분자표지가 규명되었다. 염기서열 분석기술이 발달됨에 따라 국화의 전사체가 해독되어 국화의 표준유전자 목록이 구축되고 발달단계에 따라 혹은 생물적 비생물적 환경에서 특이적으로 발현되는 유전자도 규명되었다. 또한 2배체인 야생의 국화속 식물의 유전체 해독 프로젝트가 시작되었다. 이러한 대량의 염기서열 정보는 국화의 분자육종을 위한 근원적인 자원으로 활용될 수 있을 것이다. 이 총설에서는 국화의 분자유전학, 유전체 연구의 현황을 요약하고 향후 전망을 논의한다.

Keywords

References

  1. Abdurakhmonov IY, Abdusattor A (2008) Application of association mapping to understanding the genetic diversity of plant germplasm resources. International Journal of Plant Genomics 2008:574927
  2. Anderson NO (2006) Chrysanthemum, p.389-437. In: NO Anderson (ed.). Flower breeding and genetics: issues, challenges and opportunities for the 21st century. Springer Science & Business Media
  3. Barker MS, Kane NC, Matvienko M, Kozik A, Michelmore W, Knapp SJ, Rieseberg LH (2008) Multiple paleopolyploidizations during the evolution of the Compositae reveal parallel patterns of duplicate gene retention after millions of years. Molecular Biology and Evolution 25:2445-2455 https://doi.org/10.1093/molbev/msn187
  4. Chen H, Miao F, Zhao H (2007) Genetic relationship of 85 chrysanthemum [Dendranthema x grandiflora (Ramat.) Kitamura] cultivars revealed by ISSR analysis. Acta Horticulturae Sinica 34:1243-1248
  5. Chen S, Miao H, Chen F, Jiang B, Lu J, Fang W (2009) Analysis of expressed sequence tags (ESTs) collected from the inflorescence of chrysanthemum. Plant Molecular Biology Reporter 27:503-510 https://doi.org/10.1007/s11105-009-0103-6
  6. Choi H, Jo Y, Lian S, Jo K-M, Chu H, Yoon J-Y, Choi S-K, Kim K-H, Cho WK (2015) Comparative analysis of chrysanthemum transcriptome in response to three RNA viruses: Cucumber mosaic virus, Tomato spotted wilt virus and Potato virus X. Plant Molecular Biology 88:233-248 https://doi.org/10.1007/s11103-015-0317-y
  7. Grattapaglia D, Sederoff R (1994) Genetic linkage maps of Eucalyptus grandis and Eucalyptus urophylla using a pseudotestcross: mapping strategy and RAPD markers. Genetics 137:1121-1137
  8. Hodgins KA, Lai Z, Oliveira LO, Still DW, Scascitelli M, Barker MS, Kane NC, Dempewolf H, Kozik A, Kesseli RV (2014) Genomics of Compositae crops: reference transcriptome assemblies and evidence of hybridization with wild relatives. Molecular Ecology Resources 14:166-177 https://doi.org/10.1111/1755-0998.12163
  9. Hong Y, Tang X, Huang H, Zhang Y, Dai S (2015) Transcriptomic analyses reveal species-specific light-induced anthocyanin biosynthesis in chrysanthemum. BMC Genomics 16:202 https://doi.org/10.1186/s12864-015-1428-1
  10. Huang H, Niu YJ, Cao HW, Tang XJ, Xia XL, Yin WL, Dai SL (2012) cDNA-AFLP analysis of salt-inducible genes expression in Chrysanthemum lavandulifolium under salt treatment. Journal of Plant Physiology 169:410-420 https://doi.org/10.1016/j.jplph.2011.09.013
  11. Huang X, Han B (2014) Natural variations and genome-wide association studies in crop plants. Annual Review of Plant Biology 65:531-551 https://doi.org/10.1146/annurev-arplant-050213-035715
  12. Jo Y, Jo K-M, Park S-H, Kim K-H, Cho WK (2014) Transcriptomic landscape of chrysanthemums infected by Chrysanthemum stunt viroid. Plant Omics Journal 7:1
  13. Kim JS, Pak J-H, Seo B-B, Tobe H (2003) Karyotypes of metaphase chromosomes in diploid populations of Dendranthema zawadskii and related species (Asteraceae) from Korea: diversity and evolutionary implications. Journal of Plant Research 116:47-54
  14. Kim JS, Tobe H (2009) Variations of leaf thickness in the Chrysanthemum zawadskii complex and in two related Korean species: C. boreale and C. indicum (Asteraceae). Korean Journal of Plant Taxonomy 39:29-34 https://doi.org/10.11110/kjpt.2009.39.1.029
  15. Kim SJ, Lee CH, Kim J, Kim KS (2014) Phylogenetic analysis of Korean native Chrysanthemum species based on morphological characteristics. Scientia Horticulturae 175:278-289 https://doi.org/10.1016/j.scienta.2014.06.018
  16. Kirst M, Myburg A, Sederoff R (2012) Genetic mapping in forest trees: markers, linkage analysis and genomics, p. 105-142. In : J. Setlow (ed.). Genetic Engineering: Principles and Methods, Volume 26. Springer, New York, NY
  17. Klie M, Menz I, Linde M, Debener T (2016) Strigolactone pathway genes and plant architecture: association analysis and QTL detection for horticultural traits in chrysanthemum. Molecular Genetics and Genomics 291:957-969 https://doi.org/10.1007/s00438-015-1155-y
  18. Kumar A, Singh SP, Bhakuni RS (2005) Secondary metabolites of Chrysanthemum genus and their biological activities. Current Science 89:1489-1501
  19. Kwon S-J, Hwang Y-J, Younis A, Bok RK, Lim K-B, Eun C-H, Lee J, Sohn S-H (2013) Karyomorphological analysis of wild Chrysanthemum boreale collected from four natural habitats in Korea. Flower Research Journal 21:182-189 https://doi.org/10.11623/frj.2013.21.4.34
  20. Lee YN (1969) A cytotaxonomic study on Chrysanthemum zawadskii complex in Korea (2) polyploidy. Journal of Plant Biology 12:35-48
  21. Lema‐Ruminska J, Zalewska M, Sadoch X (2004) Radiomutants of chrysanthemum (Dendranthema grandiflora Tzvelev) of the Lady group: RAPD analysis of the genetic diversity. Plant Breeding 123:290-293 https://doi.org/10.1111/j.1439-0523.2004.00996.x
  22. Li H, Chen S, Song A, Wang H, Fang W, Guan G, Jiang J, Chen F (2014) RNA-Seq derived identification of differential transcription in the chrysanthemum leaf following inoculation with Alternaria tenuissima. BMC Genomics 15:9 https://doi.org/10.1186/1471-2164-15-9
  23. Li P, Zhang F, Chen S, Jiang J, Wang H, Su J, Fang W, Guan Z, Chen F (2016) Genetic diversity, population structure and association analysis in cut chrysanthemum (Chrysanthemum morifolium Ramat.). Molecular Genetics and Genomics 291:1117-1125 https://doi.org/10.1007/s00438-016-1166-3
  24. Li R-W, Wang C, Dai S-L, Luo I-Y, Li B-Q, Zhu J, Lu J, Liu Q-Q (2012) The association analysis of phenotypic traits with SRAP markers in Chrysanthemum. Scientia Agricultura Sinica 45:1355-1364
  25. Liu H, Sun M, Du D, Pan H, Cheng T, Wang J, Zhang Q (2015) Whole-transcriptome analysis of differentially expressed genes in the vegetative buds, floral buds and buds of Chrysanthemum morifolium. Plos One 10:e0128009 https://doi.org/10.1371/journal.pone.0128009
  26. Peng H, Zhang F, Jiang J, Chen S, Fang W, Guan Z, Chen F (2015) Identification of quantitative trait loci for branching traits of spray cut chrysanthemum. Euphytica 202:385-392 https://doi.org/10.1007/s10681-014-1259-1
  27. Peng Y, Lai Z, Lane T, Nageswara-Rao M, Okada M, Jasieniuk M, O'Geen H, Kim RW, Sammons RD, Rieseberg LH, Stewart CN (2014) De novo genome assembly of the economically important weed horseweed using integrated data from multiple sequencing platforms. Plant Physiology 166:1241-1254 https://doi.org/10.1104/pp.114.247668
  28. Ren L, Sun J, Chen S, Gao J, Dong B, Liu Y, Xia X, Wang Y, Liao Y, Teng N (2014) A transcriptomic analysis of Chrysanthemum nankingense provides insights into the basis of low temperature tolerance. BMC Genomics 15:1
  29. Ritter E, Gebhardt C, Salamini F (1990) Estimation of recombination frequencies and construction of RFLP linkage maps in plants from crosses between heterozygous parents. Genetics 125:645-654
  30. Rogers K, Chen X (2013) Biogenesis, turnover, and mode of action of plant microRNAs. Plant Cell 25:2383-2399 https://doi.org/10.1105/tpc.113.113159
  31. Wang HB, Jiang JF, Chen SM, Qi XY, Peng H, Li PR, Song AP, Guan ZY, Fang WM, Liao Y, Chen FD (2013) Next-generation sequencing of the Chrysanthemum nankingense (Asteraceae) transcriptome permits large-scale unigene assembly and SSR marker discovery. Plos One 8:e62293 https://doi.org/10.1371/journal.pone.0062293
  32. Wang L, Jiang J, Song A, Wang H, Li P, Guan Z, Chen F, Chen S (2015) Comparative transcriptome analysis of Chrysanthemum nankingense in response to nitrogen deficiency. Scientia Horticulturae 195:101-107 https://doi.org/10.1016/j.scienta.2015.09.001
  33. Wang Y, Fang W, Chen F, Zhao H, Liu Z (2007) In vitro conservation of chrysanthemum 'Jinba' and genetic stability of regenerated plantlets. Acta Botanica Boreali-Occidentalia Sinica 27:1341-1348
  34. Wang Y, Huang H, Ma Y, Fu J, Wang L, Dai S (2014) Construction and de novo characterization of a transcriptome of Chrysanthemum lavandulifolium: analysis of gene expression patterns in floral bud emergence. Plant Cell, Tissue and Organ Culture 116:297-309 https://doi.org/10.1007/s11240-013-0404-1
  35. Xia X, Shao Y, Jiang J, Du X, Sheng L, Chen F, Fang W, Guan Z, Chen S (2015) MicroRNA expression profile during aphid feeding in chrysanthemum (Chrysanthemum morifolium). Plos One 10:e0143720 https://doi.org/10.1371/journal.pone.0143720
  36. Xia X, Shao Y, Jiang J, Ren L, Chen F, Fang W, Guan Z, Chen S (2014) Gene expression profiles responses to aphid feeding in chrysanthemum (Chrysanthemum morifolium). BMC Genomics 15:1050 https://doi.org/10.1186/1471-2164-15-1050
  37. Xu YJ, Gao S, Yang YJ, Huang MY, Cheng LN, Wei Q, Fei ZJ, Gao JP, Hong B (2013) Transcriptome sequencing and whole genome expression profiling of chrysanthemum under dehydration stress. BMC Genomics 14:15 https://doi.org/10.1186/1471-2164-14-15
  38. Yang WH, Glover BJ, Rao GY, Yang J (2006) Molecular evidence for multiple polyploidization and lineage recombination in the Chrysanthemum indicum polyploid complex (Asteraceae). New Phytologist 171:875-886 https://doi.org/10.1111/j.1469-8137.2006.01779.x
  39. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012a) Detection of quantitative trait loci for leaf traits in chrysanthemum. Journal of Horticultural Science and Biotechnology 87:613-618 https://doi.org/10.1080/14620316.2012.11512920
  40. Zhang F, Chen SM, Chen FD, Fang WM, Li FT (2010) A preliminary genetic linkage map of chrysanthemum (Chrysanthemum morifolium) cultivars using RAPD, ISSR and AFLP markers. Scientia Horticulturae 125:422-428 https://doi.org/10.1016/j.scienta.2010.03.028
  41. Zhang F, Chen S, Chen F, Fang W, Chen Y, Li F (2011) SRAP-based mapping and QTL detection for inflorescence-related traits in chrysanthemum (Dendranthema morifolium). Molecular Breeding 27:11-23 https://doi.org/10.1007/s11032-010-9409-1
  42. Zhang F, Chen S, Jiang J, Guan Z, Fang W, Chen F (2013) Genetic mapping of quantitative trait loci underlying flowering time in Chrysanthemum (Chrysanthemum morifolium). Plos One 8:e83023 https://doi.org/10.1371/journal.pone.0083023
  43. Zhang F, Jiang J, Chen S, Chen F, Fang W (2012b) Mapping single-locus and epistatic quantitative trait loci for plant architectural traits in chrysanthemum. Molecular Breeding 30:1027-1036 https://doi.org/10.1007/s11032-011-9686-3
  44. Zhang F, Dong W, Huang L, Song A, Wang H, Fang W, Chen F, Teng N (2015) Identification of microRNAs and their targets associated with embryo abortion during chrysanthemum cross breeding via high-throughput sequencing. Plos One 10:e0124371 https://doi.org/10.1371/journal.pone.0124371
  45. Zhang F, Wang Z, Dong W, Sun C, Wang H, Song A, He L, Fang W, Chen F, Teng N (2014) Transcriptomic and proteomic analysis reveals mechanisms of embryo abortion during chrysanthemum cross breeding. Scientific Reports 4:6536 https://doi.org/10.1038/srep06536
  46. Zhang YS, Dai L, Hong Y, Song XB (2014) Application of genomic SSR Locus polymorphisms on the identification and classification of chrysanthemum cultivars in China. Plos One 9:e104856 https://doi.org/10.1371/journal.pone.0104856
  47. Zhao HE, Liu ZH, Hu X, Yin JL, Li X, Rao GY, Zhang XH, Huang CL, Anderson N, Zhang XQ, Chen JY (2009) Chrysanthemum genetic resources and related genera of Chrysanthemum collected in China. Genetic Resources and Crop Evolution 56:937-946 https://doi.org/10.1007/s10722-009-9412-8