• Title/Summary/Keyword: Genetic Algorithms (GAs)

Search Result 242, Processing Time 0.023 seconds

Study on Condition Monitoring of 2-Spool Turbofan Engine Using Non-Linear GPA(Gas Path Analysis) Method and Genetic Algorithms (2 스풀 터보팬 엔진의 비선형 가스경로 기법과 유전자 알고리즘을 이용한 상태진단 비교연구)

  • Kong, Changduk;Kang, MyoungCheol;Park, Gwanglim
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.2
    • /
    • pp.71-83
    • /
    • 2013
  • Recently, the advanced condition monitoring methods such as the model-based method and the artificial intelligent method have been applied to maximize the availability as well as to minimize the maintenance cost of the aircraft gas turbines. Among them the non-linear GPA(Gas Path Analysis) method and the GA(Genetic Algorithms) have lots of advantages to diagnose the engines compared to other advanced condition monitoring methods such as the linear GPA, fuzzy logic and neural networks. Therefore this work applies both the non-linear GPA and the GA to diagnose AE3007 turbofan engine for an aircraft, and in case of having sensor noise and bias it is confirmed that the GA is better than the GPA through the comparison of two methods.

Desing of Genetic Algorithms Based Optimal Fuzzy Controller and Stabilization Control of the Inverted Pendulum System (유전알고리즘에 의한 최적 퍼지 제어기의 설계와 도립전자 시스템의 안정화 제어)

  • 박정훈;김태우;임영도;소명옥;이준탁
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1996.10a
    • /
    • pp.162-165
    • /
    • 1996
  • In this paper, we proposed an optimization method of the membership function and the numbers of fuzzy rule base for the stabilization controller of the inverted pendulum system by genetic algorithm(GAs). Conventional methods to these problems need to an expert knowledge or human experience. The proposed genetic algorithm method will tune automatically the input-output membership parameters and will optimize their rule-base.

  • PDF

Automatic Test Data Generation for Mutation Testing Using Genetic Algorithms (유전자 알고리즘을 이용한 뮤테이션 테스팅의 테스트 데이터 자동 생성)

  • 정인상;창병모
    • The KIPS Transactions:PartD
    • /
    • v.8D no.1
    • /
    • pp.81-86
    • /
    • 2001
  • one key goal of software testing is to generate a 'good' test data set, which is consideres as the most difficult and time-consuming task. This paper discusses how genetic algorithns can be used for automatic generation of test data set for software testing. We employ mutation testing to show the effectiveness of genetic algorithms (GAs) in automatic test data generation. The approach presented in this paper is different from other in that test generation process requireas no lnowledge of implementation details of a program under test. In addition, we have conducted some experiments and compared our approach with random testing which is also regarded as a black-box test generation technique to show its effectiveness.

  • PDF

Evaluation of the different genetic algorithm parameters and operators for the finite element model updating problem

  • Erdogan, Yildirim Serhat;Bakir, Pelin Gundes
    • Computers and Concrete
    • /
    • v.11 no.6
    • /
    • pp.541-569
    • /
    • 2013
  • There is a wide variety of existing Genetic Algorithms (GA) operators and parameters in the literature. However, there is no unique technique that shows the best performance for different classes of optimization problems. Hence, the evaluation of these operators and parameters, which influence the effectiveness of the search process, must be carried out on a problem basis. This paper presents a comparison for the influence of GA operators and parameters on the performance of the damage identification problem using the finite element model updating method (FEMU). The damage is defined as reduction in bending rigidity of the finite elements of a reinforced concrete beam. A certain damage scenario is adopted and identified using different GA operators by minimizing the differences between experimental and analytical modal parameters. In this study, different selection, crossover and mutation operators are compared with each other based on the reliability, accuracy and efficiency criteria. The exploration and exploitation capabilities of different operators are evaluated. Also a comparison is carried out for the parallel and sequential GAs with different population sizes and the effect of the multiple use of some crossover operators is investigated. The results show that the roulettewheel selection technique together with real valued encoding gives the best results. It is also apparent that the Non-uniform Mutation as well as Parent Centric Normal Crossover can be confidently used in the damage identification problem. Nevertheless the parallel GAs increases both computation speed and the efficiency of the method.

Speeding-up for error back-propagation algorithm using micro-genetic algorithms (미소-유전 알고리듬을 이용한 오류 역전파 알고리듬의 학습 속도 개선 방법)

  • 강경운;최영길;심귀보;전홍태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.853-858
    • /
    • 1993
  • The error back-propagation(BP) algorithm is widely used for finding optimum weights of multi-layer neural networks. However, the critical drawback of the BP algorithm is its slow convergence of error. The major reason for this slow convergence is the premature saturation which is a phenomenon that the error of a neural network stays almost constant for some period time during learning. An inappropriate selections of initial weights cause each neuron to be trapped in the premature saturation state, which brings in slow convergence speed of the multi-layer neural network. In this paper, to overcome the above problem, Micro-Genetic algorithms(.mu.-GAs) which can allow to find the near-optimal values, are used to select the proper weights and slopes of activation function of neurons. The effectiveness of the proposed algorithms will be demonstrated by some computer simulations of two d.o.f planar robot manipulator.

  • PDF

Minimizing the Total Stretch in Flow Shop Scheduling with Limited Capacity Buffers (한정된 크기의 버퍼가 있는 흐름 공정 일정계획의 스트레치 최소화)

  • Yoon, Suk-Hun
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.40 no.6
    • /
    • pp.642-647
    • /
    • 2014
  • In this paper, a hybrid genetic algorithm (HGA) approach is proposed for an n-job, m-machine flow shop scheduling problem with limited capacity buffers with blocking in which the objective is to minimize the total stretch. The stretch of a job is the ratio of the amount of time the job spent before its completion to its processing time. HGA adopts the idea of seed selection and development in order to improve the exploitation and exploration power of genetic algorithms (GAs). Extensive computational experiments have been conducted to compare the performance of HGA with that of GA.

No-Wait Lot-Streaming Flow Shop Scheduling (비정체 로트 - 스트리밍 흐름공정 일정계획)

  • Yoon, Suk-Hun
    • IE interfaces
    • /
    • v.17 no.2
    • /
    • pp.242-248
    • /
    • 2004
  • Lot-streaming is the process of splitting a job (lot) into a number of smaller sublots to allow the overlapping of operations between successive machines in a multi-stage production system. A new genetic algorithm (NGA) is proposed for minimizing the mean weighted absolute deviation of job completion times from due dates when jobs are scheduled in a no-wait lot-streaming flow shop. In a no-wait flow shop, each sublot must be processed continuously from its start in the first machine to its completion in the last machine without any interruption on machines and without any waiting in between the machines. NGA replaces selection and mating operators of genetic algorithms (GAs), which often lead to premature convergence, by new operators (marriage and pregnancy operators) and adopts the idea of inter-chromosomal dominance. The performance of NGA is compared with that of GA and the results of computational experiments show that NGA works well for this type of problem.

Hybrid Genetic Algorithms for Feature Selection and Classification Performance Comparisons (특징 선택을 위한 혼합형 유전 알고리즘과 분류 성능 비교)

  • 오일석;이진선;문병로
    • Journal of KIISE:Software and Applications
    • /
    • v.31 no.8
    • /
    • pp.1113-1120
    • /
    • 2004
  • This paper proposes a novel hybrid genetic algorithm for the feature selection. Local search operations are devised and embedded in hybrid GAs to fine-tune the search. The operations are parameterized in terms of the fine-tuning power, and their effectiveness and timing requirement are analyzed and compared. Experimentations performed with various standard datasets revealed that the proposed hybrid GA is superior to a simple GA and sequential search algorithms.

A Design of Optimal GA-PI Controller of Power System with SVC to Improve System Stability (시스템 안정도 향상을 위하여 SVC를 포함한 전력계통의 최적 GA-PI 제어기 설계)

  • 정형환;허동렬;이종민;주석민
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.24 no.2
    • /
    • pp.63-71
    • /
    • 2000
  • This paper deals with a systematic approach to GA-PI controller design for static VAR compensator(SVC) using genetic algorithm(GA) to improve system stability. Genetic algorithms(GAs) are search algorithms based on the mechanics of natural selection and natural genetics. To verify the validity of the proposed method, investigated damping ratio of the eigenvalues of the electro-mechanical modes system with and without SVC. Also, we considered dynamic response of terminal speed deviation and terminal voltage deviation by applying a power fluctuation at heavy load, normal load and light to verify the robustness of the proposed. Thus, we proved usefulness of GA-PI controller design to improve the stability of single machine-bus with SVC system.

  • PDF

A study on Performance Improvement of Neural Networks Using Genetic algorithms (유전자 알고리즘을 이용한 신경 회로망 성능향상에 관한 연구)

  • Lim, Jung-Eun;Kim, Hae-Jin;Chang, Byung-Chan;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.2075-2076
    • /
    • 2006
  • In this paper, we propose a new architecture of Genetic Algorithms(GAs)-based Backpropagation(BP). The conventional BP does not guarantee that the BP generated through learning has the optimal network architecture. But the proposed GA-based BP enable the architecture to be a structurally more optimized network, and to be much more flexible and preferable neural network than the conventional BP. The experimental results in BP neural network optimization show that this algorithm can effectively avoid BP network converging to local optimum. It is found by comparison that the improved genetic algorithm can almost avoid the trap of local optimum and effectively improve the convergent speed.

  • PDF