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1. Introduction

Lot-streaming is the process of splitting a job (lot) 
into a number of smaller sublots so that successive 
operations can be overlapped in a multi-stage 
production system. This process is illustrated by the 
two-job, equal sublot, three-machine, no-wait lot- 
streaming flow shop shown in Figure 1, where jobs 1 
and 2 are divided into three and two sublots, 
respectively. The processing times of jobs 1 and 2 are 
3 and 2 time units on machine 1, 3 and 6 time units 
on machine 2, and 6 and 4 time units on machine 3, 
respectively. The due dates of jobs 1 and 2 are in 8 

and 14 time units. If the jobs are not split into 
sublots, the completion times of jobs 1 and 2 will be 
12 and 16 time units, and both jobs will have a delay 
of 4 time units (schedule 1). As <Figure 1(b)> 
shows, when the jobs are split into sublots, the 
completion times of jobs are reduced to 8 and 14 
time units, respectively, and both jobs can be 
delivered on time (schedule 2).
The potential benefits of lot-streaming in batch 
manufacturing are pointed out in Jacobs and Bragg 
(1988) and Benjaafar (1996). These benefits include 
reduction of production lead times, reduction of 
work-in-process (WIP) inventory and associated 
WIP costs, reduction of interim storage and space 
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requirements, reduction of material handling system 
capacity requirements, and improvement of product 
delivery. An extensive review of research in this area 
is presented in Potts and Wassenhove (1992) and 
Graves and Kostreva (1986). Sriskandarajah and 
Wagneur (1999) have shown that the multiple-job, 
two-machine, no-wait lot-streaming flow shop 
scheduling problem to minimize the makespan could 
be solved using a modified Gilmore and Gomory’s 
algorithm (Pinedo, 2002).
In many practical situations, frequently encoun- 
tered in chemicals processing and petro-chemical 
production environments, and hot metal rolling 
industries, where the metals have to be processed 
continuously at high temperature, delays between 
operations are prohibited (Gershwin, 1994). This 
paper presents a solution methodology for an n-job, 
m-machine, no-wait flow shop scheduling problem 
with equal-size sublots in which the objective is to 
minimize the mean weighted absolute deviation 
from due dates. With the increasing interest in 
just-in-time (JIT) production systems, the trend of 
research has changed to scheduling problems with 
earliness and tardiness costs. In a JIT production 
system, it is highly desirable that jobs be completed 
exactly on their due dates. Since most scheduling 
problems involving earliness and tardiness penalties 
are not tractable, it is usually very difficult to find a 

global optimum solution by general local search 
algorithms such as the adjacent pairwise interchange 
method. Recently, several methods have been 
proposed to escape from local optima and search for 
global or near-optimal solutions. Among these, 
meta-heuristic methods such as genetic algorithms, 
simulated annealing, and tabu search, have been 
successful in solving combinatorial optimization 
problems (Reeves, 1993).
GAs have been applied to various problems that 
could not have been readily solved with conventional 
computational techniques. In spite of their desirable 
properties, basic GAs can still fail for a variety of 
reasons, including choice of representation that is not 
consistent with the crossover operator, failure to 
represent problem specific information, and conver- 
gence to local optima (premature convergence). In 
Section 2, the n-job, m-machine, equal-size sublot, 
no-wait lot-streaming flow shop problem is defined. 
For a given job sequence (individual), a linear pro- 
gramming (LP) formulation is presented to obtain 
optimal sublot starting and completion times, since 
the objective function value of a sequence may be 
improved by inserting idle times between sublots 
and between jobs. The objective function values of 
the LP are transformed to obtain fitness values of 
individuals. An NGA is developed to overcome the 
premature convergence of GAs in Section 3. NGA 

M1 1 2

M2 1 2

M3 1 2

time 3 6 12 16

(a) schedule without sublots (schedule 1)

M1 1 1 1 2 2

M2 1 1 1 2 2

M3 1 1 1 2 2

time 1 2 3 4 5 6 8 9 11 12 14

(b) schedule with sublots (schedule 2)

Figure 1. Two schedules for a three-machine flow shop(the numerical represent jobs).
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replaces the GAs’ selection and mating operators by 
new operators (marriage and pregnancy operators). 
NGA also adopts the idea of inter-chromosomal 
dominance to prevent the inheritance of undesirable 
features from sequences. With fitness values of 
individuals, NGA searches for the best sequences. In 
Section 4, some computational results are provided 
and the performance of NGA is compared with those 
of GAs. Finally, a summary of main results and 
conclusions are provided in Section 5.

2.  No-wait Lot-streaming Flow Shop

The problem studied in this chapter is the minimiza- 
tion of the mean weighted absolute deviation of job 
completion times from due dates for the n-job, 
m-machine, no-wait lot-streaming flow shop where 
sublots in a job have equal-size. For job j, j = 1, 
..., n, let sj be the number of sublots, dj is the due 
date, αj the earliness penalty, βj the tardiness 
penalty, and ri,j the sublot processing time on 
machine i, i = 1, …, m. Let ci,j,k the completion time 
of the sublot k of job j on machine i. Then, ej = 
max{0, dj - cm,j,sj} and tj = max{0, cm,j,sj - dj}. 
This problem can be formulated as a zero-one mixed 
integer linear programming (MILP). Let M be a big 
number. Define binary integer variables xj1,j2 as 
follows:

xj1, j2
=





1,           if   job      j1     precedes       job     j2

0,         otherwise
(1)

 m inimize           z = Σ
j = 1

n

[αje1j+ jt1j ] (2)

s.t.          ci, j1, sj1
− ri, j2≥ci, j2,1

+ M (1 − xj1 , j2
),

for i =  1,  ...,  m,   j 1, j2 =  1,  ...,  n, j1≠ j2 (3)

        ci, j, k − ri, j≥ci, j, k − 1,

for i =  1,  ...,  m,  j  =  1,  ...,  n,  k =  2,  ...,  sj (4)

        ci, j, k − ri, j = ci − 1, j , k, 

for i =  2,  ...,  m,  j  =  1,  ...,  n,  k =  1,  ...,  sj (5)

        cm,j,s j
− tj + ej = dj,

for j  =  1,  ...,  n (6)

      xj1, j2
+ xj2, j1

= 1, 

for     j 1, j2 =  1,  ...,  n, j1≠ j2 (7)

      c1, j,1≥r1, j,               for j = 1, ...,  n (8)

      ci, j, k≥0,

for i =  1,  ...,  m,   j  =  1,  ...,  n,  k =  1,  ...,  sj (9)

      ej, tj≥0,                                                       for j =  1,  ..., n (10)

      xj1, j2
= 0    or   1,

for     j 1, j2 =  1,  ...,  n, j1≠ j2 . (11)

Constraint set (3) establishes the relationships 
between completion times of any two jobs on each 
machine. That is, only one job at most can be 
processed on each machine at the same time. 
Constraint set (4) states that each machine can 
process at most one sublot at the same time. 
Constraint set (5) insures that once a sublot is 
released from a machine, its processing on the 
downstream machine begins immediately. Constraint 
set (6) states that the completion time of a job at the 
last machine is equal to its due date minus or plus 
the amount of time it is early or tardy. Constraint set 
(7) insures the definition of 0-1 integer variables. 
That is, a job cannot precede and follow another job 
at the same time. Constraint set (8) states that jobs 
are available at time zero. The inequalities (9) and 
(10) insure nonnegativity of variables. The equalities 
(11) insure 0-1 integer values of variables.
The optimal schedule for this zero-one MILP can 
be determined by general purpose methods such as 
branch and bound enumeration or dynamic progra- 
mming. Since this problem is NP-complete in the 
strong sense, it requires significant computational 
effort to solve this zero-one MILP with large n. 
Consequently, it is of great interest to find good 
approximation algorithms for the problem. The 
problem can also be modeled in the following stan- 
dard form:

 m inimize           z (σl ) = Σ
j = 1

n

[αje1j+ jt1j ], (12)

subject     to             σl Π , (13)

where σl = {σl (1), σl (2), ..., σl (n)} is a sequence of 
jobs defined by a permutation of integers {1,…, n}, 
σl (j) represents the jth job (also called gene) in the 
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sequence, and Π is the set of all feasible sequences. 
The cardinality of Π is n!. 
Let ci,σi(j),k represent the completion time of sublot k 
of the jth job on machine i for individual σl in the 
population. The optimal sublot starting and 
completion times for a given sequence σl, l = 1, ..., 
w, can be obtained by solving the following LP:

 m inimize           z (σl ) = Σ
j = 1

n

[α je1j + jt1j ]

s.t.         ci ,σl (j ),1
− ri,σl (j )≥ci, σl (j − 1 ), sσl (j − 1 )

,

 for i =  1,  ...,  m,   j  =  2,  ...,  n

        ci, j, k − ri, j≥ci, j, k − 1,

 for i =  1,  ...,  m,   j  =  1,  ...,  n,  k =  2 ,  ...,  sj

        ci, j, k − ri, j = ci − 1, j , k,

 for i =  2,  ...,  m,   j  =  1,  ...,  n,  k =  1,  ...,  sj

        cm, j,sj
− tj + ej = dj,           for j  =  1,  ...,  n

        c1,σl (1 ),1≥r1, σl (1 )

        ci, j, k≥0,

 for i =  1,  ...,  m,   j  =  1,  ...,  n,  k =  1,  ...,  sj

        e1j, t1j≥0,          for j  =  1,  ..., n .

3.  New Genetic Algorithm (NGA)

With the “survival of the fittest” philosophy, GAs 
select individuals in a population to form a gene pool 
according to their fitness values. High fit individuals 
can be selected more than once, but some low fit 
individuals may not. Two individuals (couple) in the 
gene pool are randomly mated to produce two 
offspring for crossover and mutation processes. 
Unlike GAs, NGA does not have a selection process. 
Every individual is mated with another in a 
population and this mating process is called marriage. 
The sum of the fitness values of two mated 
individuals becomes the couple’s fitness value. A 
couple may be selected to produce a single offspring 
according to the couple’s fitness value and this 

process is called pregnancy. Some couples may be 
selected multiple times and hence produce two or 
more offspring, while others may not. If a couple 
produces one offspring, its fitness value decreases by 
a fraction of its value(i.e., the pregnancy rate 
decreases), which can be interpreted as aging effect. 
This procedure continues until the number of 
offspring reaches a population size (i.e., the number 
of individuals in a population). The detail procedure 
of NGA is explained below.
NGA uses a permutation representation for indivi- 
duals where a sequence of n jobs is defined by a 
permutation of integers {1,…, n}. NGA begins with 
randomly generated populations since the use of 
randomly generated individuals enables unbiased 
sampling of the search space. The optimal sublot 
starting and completion times for individuals are 
obtained by solving LP. The objective function 
values of the LP are transformed to obtain fitness 
values of individuals by the ranking procedure 
(Reeves, 1995). In the ranking procedure, the 
population is sorted according to the objective 
function value. An individual with the maximal 
objective function value has a rank of one, and an 
individual with the second high objective function 
value has a rank of 2, and so on. Ties are broken 
arbitrarily. These individuals’ ranks are used as their 
fitness values. Once every individual in a population 
has been mated with another, a couple is selected to 
produce an offspring according to the couple’s 
fitness value. NGA adopts the roulette wheel 
selection procedure (Goldberg, 1989) with couples’ 
fitness values. In the roulette wheel selection 
procedure, the ratio of a couple’s fitness value to the 
sum of all couples’ fitness values is the probability 
that this couple may be selected.
NGA adopts the idea of inter-chromosomal 
dominance and incorporates this idea into PMX. In 
NGA, PMX with inter-chromosomal dominance is 
developed to produce only one offspring at a time. 
Two offspring are generated by PMX and the 
offspring that has more genes from the higher fit 
individual in the original couple (inter-chromosomal 
dominance) is selected. In this way, more genes from 
the higher fit individual are inherited by the 
offspring. Suppose that A and B are the two indivi- 
duals in the couple chosen for crossover, such that A 
= (5 1 8 6 7 2 3 4) with a fitness value of 76 and B 
= (6 8 4 7 1 3 5 2) with a fitness value of 53. Let 
two crossover points be 2 and 5. PMX produces two 
offsprings, A' = (5 6 4 7 1 2 3 8) and B' = (1 4 8 6 
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7 3 5 2). PMX with inter-chromosomal dominance 
produces an offspring A'' = (5 6 4 7 1 2 3 8) since 
A'' has more genes from higher fit individual A. 
Once an offspring is produced by PMX with 
inter-chromosomal dominance, the offspring may be 
mutated with certain mutation rate. NGA adopts 
the adjacent swap method with a constant mutation 
rate in which a job is exchanged with the next job in 
the job sequence. If the last job is to be mutated, it is 
exchanged with the first job in the job sequence.

New Genetic Algorithm (NGA)

Step 1 (Initialization)
Generate an initial population with w individuals 
using a random number generator.

Step 2 (Calculation of Individual’s Fitness)
(a) Obtain objective function values of individuals 
in the population by using LP.

(b) Compute the fitness values of individuals in the 
population.

Step 3 (Marriage and Pregnancy)
(a) Mate every individual with another individual 
randomly and sum the fitness values of the 
couple.

(b) Use the roulette wheel selection to choose a 
couple for crossover and mutation processes.

Step 4 (Reproduction)
(a) Apply PMX with inter-chromosomal dominan- 
ce with a constant crossover rate to the couple 
chosen at Step 3.

(b) Apply the adjacent swap method with a cons- 
tant mutation rate to the offspring produced by 

PMX with inter-chromosomal dominance.
(c) If the number of offspring reaches w, go to Step 
5. Otherwise, go to Step 3.

Step 5 (Termination test)
If NGA reaches the maximum number of genera- 
tions, stop. Otherwise, go to Step 2.

4.  Computational Study

The LP formulation, NGA, and GA were coded in 
Visual FORTRAN with the IMSL library and ran on 
a Pentium IV 1.8 GHz PC. Due dates, processing 
times, earliness and tardiness penalties of jobs, and 
the number of sublots per each job, were generated 
according to the integer uniform distributions 
provided in <Table 1>.
The experiments were divided into two parts: a 
preliminary test and a main test. Since the 
performances of GA and NGA are influenced by 
several control parameters, a preliminary test is 
necessary to achieve the best parameter set for GA 
and NGA. In the preliminary test, 8 test problems of 
different sizes generated according to the data in 
<Table 1> were solved. GA produced the best 
objective function value by using a population size 
(PPSZ) of 100, a total of 100 generations (XGEN), a 
mutation rate (pm) of 0.01, and the stochastic 
remainder selection procedure without replacement 
(Goldberg, 1989). The best average objective 
function value for NGA was obtained by using a loss 
of pregnancy rate of 1/PPSZ, a population size of 
100, a total of 100 generations, and a mutation rate 
of 0.01. These parameters are used in the main test.

Table 1.  Data used to generate test problems (all data are integers)

Data Value

Number of jobs (NJ) 10, 15

Number of machines (NM) 2, 3, 4, 5

Number of sublots (NS) Uniform(1, 6)

Earliness penalties Uniform(1, 6)

Tardiness penalties Uniform(1, 6)

Sublot processing times (SP) Uniform(1, 31)

Job processing times NS * SP

Due dates Uniform(15 * NJ, 15 * (NJ +NM))
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The test problems for the main test were generated 
in a similar way. Ten different test problems were 
generated for each problem size. These 80 problems 
were solved by NGA. NGA was applied to medium 
size (10 jobs and 2-5 machines) and large size (15 
jobs and 2-5 machines) problems. To evaluate the 
performance of NGA, the solutions obtained by 
NGA were compared with the solutions provided by 
GA. The results of NGA and GA for medium and 
large size problems are shown in <Table 2>. The 
average objective function values reported in <Table 
2> are the average values of three instances for each 
problem size. Based on these results, NGA provides 
an 8.15% improvement with respect to GA on the 
average.

5.  Conclusions

This paper addresses the problem of minimizing the 
mean weighted absolute deviation of job completion 
times from due dates when jobs are scheduled in the 
n-job, m-machine, no-wait lot-streaming flow shop. 
This problem is formulated as a zero-one MILP. 
Since this problem is NP-complete in the strong 
sense, it requires significant computational effort to 
solve this zero-one MILP with large n. Consequently, 
it is necessary to find good approximation algorithms 
for the problem. NGA has been proposed to solve 

the problem. The marriage and pregnancy operators 
have been developed and the GAs’ selection and 
mating operators are replaced by these operators to 
overcome premature convergence. Also, the inter- 
chromosomal dominance has been introduced and 
incorporated into PMX to restrain the inheritance of 
undesired characteristics from the low fit parent. The 
results of NGA have been compared with that of 
GA. Based on these results, the solution quality 
provided by NGA has been improved with respect to 
GA for this type of problem.
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