• Title/Summary/Keyword: Genetic Algorithms

Search Result 1,596, Processing Time 0.027 seconds

Computing Algorithm for Genetic Evaluations on Several Linear and Categorical Traits in A Multivariate Threshold Animal Model (범주형 자료를 포함한 다형질 임계개체모형에서 유전능력 추정 알고리즘)

  • Lee, D.H.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.2
    • /
    • pp.137-144
    • /
    • 2004
  • Algorithms for estimating breeding values on several categorical data by using latent variables with threshold conception were developed and showed. Thresholds on each categorical trait were estimated by Newton’s method via gradients and Hessian matrix. This algorithm was developed by way of expansion of bivariate analysis provided by Quaas(2001). Breeding values on latent variables of categorical traits and observations on linear traits were estimated by preconditioned conjugate gradient(PCG) method, which was known having a property of fast convergence. Example was shown by simulated data with two linear traits and a categorical trait with four categories(CE=calving ease) and a dichotomous trait(SB=Still Birth) in threshold animal mixed model(TAMM). Breeding value estimates in TAMM were compared to those in linear animal mixed model (LAMM). As results, correlation estimates of breeding values to parameters were 0.91${\sim}$0.92 on CE and 0.87${\sim}$0.89 on SB in TAMM and 0.72~0.84 on CE and 0.59~0.70 on SB in LAMM. As conclusion, PCG method for estimating breeding values on several categorical traits with linear traits were feasible in TAMM.

Speed Control of Marine Gas Turbine Engine using Nonlinear PID Controller (비선형 PID 제어기를 이용한 선박용 가스터빈 엔진의 속도 제어)

  • Lee, Yun-Hyung;So, Myung-Ok
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.457-463
    • /
    • 2015
  • A gas turbine engine plays an important role as a prime mover that is used in the marine transportation field as well as the space/aviation and power plant fields. However, it has a complicated structure and there is a time delay element in the combustion process. Therefore, an elaborate mathematical model needs to be developed to control a gas turbine engine. In this study, a modeling technique for a gas generator, a PLA actuator, and a metering valve, which are major components of a gas turbine engine, is explained. In addition, sub-models are obtained at several operating points in a steady state based on the trial running data of a gas turbine engine, and a method for controlling the engine speed is proposed by designing an NPID controller for each sub-model. The proposed NPID controller uses three kinds of gains that are implemented with a nonlinear function. The parameters of the NPID controller are tuned using real-coded genetic algorithms in terms of minimizing the objective function. The validity of the proposed method is examined by applying to a gas turbine engine and by conducting a simulation.

Study on Potential Water Resources of Andong-Imha Dam by Diversion Tunnel (안동-임하 연결도수로 설치에 따른 가용 수자원량에 관한 연구)

  • Choo, Yeon Moon;Jee, Hong Kee;Kwon, Ki Dae;Kim, Chul Young
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.15 no.2
    • /
    • pp.1126-1139
    • /
    • 2014
  • World is experiencing abnormal weather caused by urbanization and industrialization increasing greenhouse gas and one of these phenomenon domestically happening is flood and drought. The increase of green-house gases is due to urbanization and industrialization acceleration which are causing abnormal climate changes such as the El Nino and a La Nina phenomenon. It is expected that there will be many difficulties in water management, especially considering the topography and seasonal circumstances in Korea. Unlike in the past, a variety of water conservation initiatives have been undertaken like the river-management flow and water capacity expansion projects. To meet the increasing demand for water resources, new environmentally-friendly small and medium-sized dams have been built. Therefore, the development of a new paradigm for water resources management is essential. This study shows that additional security is needed for potential water resources through diversion tunnels and is very important to consider for future water supplies and situations. Using RCP 6.0 and RCP 8.5 in representative concentration pathway climate change scenario, specific hydrologic data of study basin was produced to analyze past observed basin rainfall tendency which showed both scenario 5%~9% range increase in rainfall. Through sensitivity analysis using objective function, population in highest goodness was 1000 and cross rate was 80%. In conclusion, it is expected that the results from this study will help to make long-term and stable water supply plans by using the potential water resource evaluation model which was applied in this study.

Efficient Feature Selection Based Near Real-Time Hybrid Intrusion Detection System (근 실시간 조건을 달성하기 위한 효과적 속성 선택 기법 기반의 고성능 하이브리드 침입 탐지 시스템)

  • Lee, Woosol;Oh, Sangyoon
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.5 no.12
    • /
    • pp.471-480
    • /
    • 2016
  • Recently, the damage of cyber attack toward infra-system, national defence and security system is gradually increasing. In this situation, military recognizes the importance of cyber warfare, and they establish a cyber system in preparation, regardless of the existence of threaten. Thus, the study of Intrusion Detection System(IDS) that plays an important role in network defence system is required. IDS is divided into misuse and anomaly detection methods. Recent studies attempt to combine those two methods to maximize advantagesand to minimize disadvantages both of misuse and anomaly. The combination is called Hybrid IDS. Previous studies would not be inappropriate for near real-time network environments because they have computational complexity problems. It leads to the need of the study considering the structure of IDS that have high detection rate and low computational cost. In this paper, we proposed a Hybrid IDS which combines C4.5 decision tree(misuse detection method) and Weighted K-means algorithm (anomaly detection method) hierarchically. It can detect malicious network packets effectively with low complexity by applying mutual information and genetic algorithm based efficient feature selection technique. Also we construct upgraded the the hierarchical structure of IDS reusing feature weights in anomaly detection section. It is validated that proposed Hybrid IDS ensures high detection accuracy (98.68%) and performance at experiment section.

Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores (시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측)

  • Park, Hoyeon;Kim, Kyoung-jae
    • Journal of Intelligence and Information Systems
    • /
    • v.24 no.4
    • /
    • pp.155-170
    • /
    • 2018
  • Predicting a company's financial bankruptcy is traditionally one of the most crucial forecasting problems in business analytics. In previous studies, prediction models have been proposed by applying or combining statistical and machine learning-based techniques. In this paper, we propose a novel intelligent prediction model based on the simulated annealing which is one of the well-known optimization techniques. The simulated annealing is known to have comparable optimization performance to the genetic algorithms. Nevertheless, since there has been little research on the prediction and classification of business decision-making problems using the simulated annealing, it is meaningful to confirm the usefulness of the proposed model in business analytics. In this study, we use the combined model of simulated annealing and machine learning to select the input features of the bankruptcy prediction model. Typical types of combining optimization and machine learning techniques are feature selection, feature weighting, and instance selection. This study proposes a combining model for feature selection, which has been studied the most. In order to confirm the superiority of the proposed model in this study, we apply the real-world financial data of the Korean companies and analyze the results. The results show that the predictive accuracy of the proposed model is better than that of the naïve model. Notably, the performance is significantly improved as compared with the traditional decision tree, random forests, artificial neural network, SVM, and logistic regression analysis.

Experimental Study on Microseismic Source Location by Dimensional Conditions and Arrival Picking Methods (차원 및 초동발췌방법에 따른 미소진동 음원위치결정 실험연구)

  • Cheon, Dae-Sung;Yu, Jeongmin;Lee, Jang-baek
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.243-261
    • /
    • 2019
  • Microseismic monitoring technologies have been recognized for its superiority over traditional methods and are used in domestic and overseas underground mines. However, the complex gangway layout of underground mines in Korea and the mixed structure of excavated space and rock masses make it difficult to estimate the microseismic propagation and to determine the arrival time of microseismic wave. In this paper, experimental studies were carried out to determine the source location according to various arrival picking methods and dimensional conditions. The arrival picking methods used were FTC (First Threshold Cross), Picking window, AIC (Akaike Information Criterion), and 2-D and 3-D source generation experiments were performed, respectively, under the 2-D sensor array. In each experiment, source location algorithm used iterative method and genetic algorithm. The iterative method was effective when the sensor array and source generation were the same dimension, but it was not suitable to apply when the source generation was higher dimension. On the other hand, in case of source location using RCGA, the higher dimensional source location could be determined, but it took longer time to calculate. The accuracy of the arrival picking methods differed according to the source location algorithms, but picking window method showed high accuracy in overall.

Domain Knowledge Incorporated Counterfactual Example-Based Explanation for Bankruptcy Prediction Model (부도예측모형에서 도메인 지식을 통합한 반사실적 예시 기반 설명력 증진 방법)

  • Cho, Soo Hyun;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.2
    • /
    • pp.307-332
    • /
    • 2022
  • One of the most intensively conducted research areas in business application study is a bankruptcy prediction model, a representative classification problem related to loan lending, investment decision making, and profitability to financial institutions. Many research demonstrated outstanding performance for bankruptcy prediction models using artificial intelligence techniques. However, since most machine learning algorithms are "black-box," AI has been identified as a prominent research topic for providing users with an explanation. Although there are many different approaches for explanations, this study focuses on explaining a bankruptcy prediction model using a counterfactual example. Users can obtain desired output from the model by using a counterfactual-based explanation, which provides an alternative case. This study introduces a counterfactual generation technique based on a genetic algorithm (GA) that leverages both domain knowledge (i.e., causal feasibility) and feature importance from a black-box model along with other critical counterfactual variables, including proximity, distribution, and sparsity. The proposed method was evaluated quantitatively and qualitatively to measure the quality and the validity.

Investigating Dynamic Mutation Process of Issues Using Unstructured Text Analysis (부도예측을 위한 KNN 앙상블 모형의 동시 최적화)

  • Min, Sung-Hwan
    • Journal of Intelligence and Information Systems
    • /
    • v.22 no.1
    • /
    • pp.139-157
    • /
    • 2016
  • Bankruptcy involves considerable costs, so it can have significant effects on a country's economy. Thus, bankruptcy prediction is an important issue. Over the past several decades, many researchers have addressed topics associated with bankruptcy prediction. Early research on bankruptcy prediction employed conventional statistical methods such as univariate analysis, discriminant analysis, multiple regression, and logistic regression. Later on, many studies began utilizing artificial intelligence techniques such as inductive learning, neural networks, and case-based reasoning. Currently, ensemble models are being utilized to enhance the accuracy of bankruptcy prediction. Ensemble classification involves combining multiple classifiers to obtain more accurate predictions than those obtained using individual models. Ensemble learning techniques are known to be very useful for improving the generalization ability of the classifier. Base classifiers in the ensemble must be as accurate and diverse as possible in order to enhance the generalization ability of an ensemble model. Commonly used methods for constructing ensemble classifiers include bagging, boosting, and random subspace. The random subspace method selects a random feature subset for each classifier from the original feature space to diversify the base classifiers of an ensemble. Each ensemble member is trained by a randomly chosen feature subspace from the original feature set, and predictions from each ensemble member are combined by an aggregation method. The k-nearest neighbors (KNN) classifier is robust with respect to variations in the dataset but is very sensitive to changes in the feature space. For this reason, KNN is a good classifier for the random subspace method. The KNN random subspace ensemble model has been shown to be very effective for improving an individual KNN model. The k parameter of KNN base classifiers and selected feature subsets for base classifiers play an important role in determining the performance of the KNN ensemble model. However, few studies have focused on optimizing the k parameter and feature subsets of base classifiers in the ensemble. This study proposed a new ensemble method that improves upon the performance KNN ensemble model by optimizing both k parameters and feature subsets of base classifiers. A genetic algorithm was used to optimize the KNN ensemble model and improve the prediction accuracy of the ensemble model. The proposed model was applied to a bankruptcy prediction problem by using a real dataset from Korean companies. The research data included 1800 externally non-audited firms that filed for bankruptcy (900 cases) or non-bankruptcy (900 cases). Initially, the dataset consisted of 134 financial ratios. Prior to the experiments, 75 financial ratios were selected based on an independent sample t-test of each financial ratio as an input variable and bankruptcy or non-bankruptcy as an output variable. Of these, 24 financial ratios were selected by using a logistic regression backward feature selection method. The complete dataset was separated into two parts: training and validation. The training dataset was further divided into two portions: one for the training model and the other to avoid overfitting. The prediction accuracy against this dataset was used to determine the fitness value in order to avoid overfitting. The validation dataset was used to evaluate the effectiveness of the final model. A 10-fold cross-validation was implemented to compare the performances of the proposed model and other models. To evaluate the effectiveness of the proposed model, the classification accuracy of the proposed model was compared with that of other models. The Q-statistic values and average classification accuracies of base classifiers were investigated. The experimental results showed that the proposed model outperformed other models, such as the single model and random subspace ensemble model.

Response Modeling for the Marketing Promotion with Weighted Case Based Reasoning Under Imbalanced Data Distribution (불균형 데이터 환경에서 변수가중치를 적용한 사례기반추론 기반의 고객반응 예측)

  • Kim, Eunmi;Hong, Taeho
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.29-45
    • /
    • 2015
  • Response modeling is a well-known research issue for those who have tried to get more superior performance in the capability of predicting the customers' response for the marketing promotion. The response model for customers would reduce the marketing cost by identifying prospective customers from very large customer database and predicting the purchasing intention of the selected customers while the promotion which is derived from an undifferentiated marketing strategy results in unnecessary cost. In addition, the big data environment has accelerated developing the response model with data mining techniques such as CBR, neural networks and support vector machines. And CBR is one of the most major tools in business because it is known as simple and robust to apply to the response model. However, CBR is an attractive data mining technique for data mining applications in business even though it hasn't shown high performance compared to other machine learning techniques. Thus many studies have tried to improve CBR and utilized in business data mining with the enhanced algorithms or the support of other techniques such as genetic algorithm, decision tree and AHP (Analytic Process Hierarchy). Ahn and Kim(2008) utilized logit, neural networks, CBR to predict that which customers would purchase the items promoted by marketing department and tried to optimized the number of k for k-nearest neighbor with genetic algorithm for the purpose of improving the performance of the integrated model. Hong and Park(2009) noted that the integrated approach with CBR for logit, neural networks, and Support Vector Machine (SVM) showed more improved prediction ability for response of customers to marketing promotion than each data mining models such as logit, neural networks, and SVM. This paper presented an approach to predict customers' response of marketing promotion with Case Based Reasoning. The proposed model was developed by applying different weights to each feature. We deployed logit model with a database including the promotion and the purchasing data of bath soap. After that, the coefficients were used to give different weights of CBR. We analyzed the performance of proposed weighted CBR based model compared to neural networks and pure CBR based model empirically and found that the proposed weighted CBR based model showed more superior performance than pure CBR model. Imbalanced data is a common problem to build data mining model to classify a class with real data such as bankruptcy prediction, intrusion detection, fraud detection, churn management, and response modeling. Imbalanced data means that the number of instance in one class is remarkably small or large compared to the number of instance in other classes. The classification model such as response modeling has a lot of trouble to recognize the pattern from data through learning because the model tends to ignore a small number of classes while classifying a large number of classes correctly. To resolve the problem caused from imbalanced data distribution, sampling method is one of the most representative approach. The sampling method could be categorized to under sampling and over sampling. However, CBR is not sensitive to data distribution because it doesn't learn from data unlike machine learning algorithm. In this study, we investigated the robustness of our proposed model while changing the ratio of response customers and nonresponse customers to the promotion program because the response customers for the suggested promotion is always a small part of nonresponse customers in the real world. We simulated the proposed model 100 times to validate the robustness with different ratio of response customers to response customers under the imbalanced data distribution. Finally, we found that our proposed CBR based model showed superior performance than compared models under the imbalanced data sets. Our study is expected to improve the performance of response model for the promotion program with CBR under imbalanced data distribution in the real world.

Self-optimizing feature selection algorithm for enhancing campaign effectiveness (캠페인 효과 제고를 위한 자기 최적화 변수 선택 알고리즘)

  • Seo, Jeoung-soo;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.4
    • /
    • pp.173-198
    • /
    • 2020
  • For a long time, many studies have been conducted on predicting the success of campaigns for customers in academia, and prediction models applying various techniques are still being studied. Recently, as campaign channels have been expanded in various ways due to the rapid revitalization of online, various types of campaigns are being carried out by companies at a level that cannot be compared to the past. However, customers tend to perceive it as spam as the fatigue of campaigns due to duplicate exposure increases. Also, from a corporate standpoint, there is a problem that the effectiveness of the campaign itself is decreasing, such as increasing the cost of investing in the campaign, which leads to the low actual campaign success rate. Accordingly, various studies are ongoing to improve the effectiveness of the campaign in practice. This campaign system has the ultimate purpose to increase the success rate of various campaigns by collecting and analyzing various data related to customers and using them for campaigns. In particular, recent attempts to make various predictions related to the response of campaigns using machine learning have been made. It is very important to select appropriate features due to the various features of campaign data. If all of the input data are used in the process of classifying a large amount of data, it takes a lot of learning time as the classification class expands, so the minimum input data set must be extracted and used from the entire data. In addition, when a trained model is generated by using too many features, prediction accuracy may be degraded due to overfitting or correlation between features. Therefore, in order to improve accuracy, a feature selection technique that removes features close to noise should be applied, and feature selection is a necessary process in order to analyze a high-dimensional data set. Among the greedy algorithms, SFS (Sequential Forward Selection), SBS (Sequential Backward Selection), SFFS (Sequential Floating Forward Selection), etc. are widely used as traditional feature selection techniques. It is also true that if there are many risks and many features, there is a limitation in that the performance for classification prediction is poor and it takes a lot of learning time. Therefore, in this study, we propose an improved feature selection algorithm to enhance the effectiveness of the existing campaign. The purpose of this study is to improve the existing SFFS sequential method in the process of searching for feature subsets that are the basis for improving machine learning model performance using statistical characteristics of the data to be processed in the campaign system. Through this, features that have a lot of influence on performance are first derived, features that have a negative effect are removed, and then the sequential method is applied to increase the efficiency for search performance and to apply an improved algorithm to enable generalized prediction. Through this, it was confirmed that the proposed model showed better search and prediction performance than the traditional greed algorithm. Compared with the original data set, greed algorithm, genetic algorithm (GA), and recursive feature elimination (RFE), the campaign success prediction was higher. In addition, when performing campaign success prediction, the improved feature selection algorithm was found to be helpful in analyzing and interpreting the prediction results by providing the importance of the derived features. This is important features such as age, customer rating, and sales, which were previously known statistically. Unlike the previous campaign planners, features such as the combined product name, average 3-month data consumption rate, and the last 3-month wireless data usage were unexpectedly selected as important features for the campaign response, which they rarely used to select campaign targets. It was confirmed that base attributes can also be very important features depending on the type of campaign. Through this, it is possible to analyze and understand the important characteristics of each campaign type.