DOI QR코드

DOI QR Code

Experimental Study on Microseismic Source Location by Dimensional Conditions and Arrival Picking Methods

차원 및 초동발췌방법에 따른 미소진동 음원위치결정 실험연구

  • Cheon, Dae-Sung (Korea Institute of Geoscience and Mineral Resources) ;
  • Yu, Jeongmin (Korea Institute of Geoscience and Mineral Resources) ;
  • Lee, Jang-baek (Korea Institute of Geoscience and Mineral Resources)
  • Received : 2019.08.14
  • Accepted : 2019.08.23
  • Published : 2019.08.31

Abstract

Microseismic monitoring technologies have been recognized for its superiority over traditional methods and are used in domestic and overseas underground mines. However, the complex gangway layout of underground mines in Korea and the mixed structure of excavated space and rock masses make it difficult to estimate the microseismic propagation and to determine the arrival time of microseismic wave. In this paper, experimental studies were carried out to determine the source location according to various arrival picking methods and dimensional conditions. The arrival picking methods used were FTC (First Threshold Cross), Picking window, AIC (Akaike Information Criterion), and 2-D and 3-D source generation experiments were performed, respectively, under the 2-D sensor array. In each experiment, source location algorithm used iterative method and genetic algorithm. The iterative method was effective when the sensor array and source generation were the same dimension, but it was not suitable to apply when the source generation was higher dimension. On the other hand, in case of source location using RCGA, the higher dimensional source location could be determined, but it took longer time to calculate. The accuracy of the arrival picking methods differed according to the source location algorithms, but picking window method showed high accuracy in overall.

미소진동기술을 활용한 계측 및 안전관리는 전통적인 방법에 비해 우수성이 인정되어 국내외 광산 등에서 활용되고 있다. 그러나 국내 지하광산의 비정형화와 채굴적과 암반 등이 혼재한 복잡한 구조는 미소 진동 전파속도 산정과 미소진동 신호의 초동발췌를 어렵게 한다. 본 연구에서는 여러 초동발췌방법과 차원에 따른 음원위치의 결정에 대해 실험적 연구를 수행하였다. 초동발췌방법은 FTC(First Threshold Cross), Picking window, AIC(Akaike Information Criterion)을 사용하였으며, 2차원 센서 배열일 때 2차원과 3차원 음원발생 실험을 수행하였다. 각 실험에서 음원위치결정 알고리즘은 반복법과 유전자 알고리즘을 사용하였다. 반복법은 센서 배열과 음원발생이 동차원인 경우 효과적이나 음원발생이 상위차원인 경우에는 적합하지 않았다. 반면, RCGA를 이용한 음원위치결정의 경우 상위차원 음원위치를 결정할 수 있었으나 계산속도가 다소 느렸다. 초동발췌방법의 정확도는 음원위치결정 방법에 따라 다르게 나타났으나, Picking window가 전반적으로 높은 정확도를 나타냈다.

Keywords

References

  1. Akaike, H., 1973, Information theory and an extension of the maximum likelihood principle, in: Petrov, B.B., Csaki, F. (eds.), 2nd International Symposium on Information theory, Budapest, 267-281.
  2. Cheon, D.S., Jung, Y.B., and Park, E.S., 2014, Development of acoustic emission monitoring system for the safety of geotechnical structures, J. Korean tunnelling and Underground Space Assoc. 16(5), 471-485 https://doi.org/10.9711/KTAJ.2014.16.5.471
  3. Cheon, D.S., and Jung. Y.B., 2017, Analysis of acoustic emission signals during long-term strength tests of brittle materials, Tunnel & Underground Space, 27(3), 121-131 https://doi.org/10.7474/TUS.2017.27.3.121
  4. Du Plessis, M., and Malan, D., 2015, Crush pillar support - designing for controlled pillar failure, J. S. Afr. Inst. Min, Metall, 115(6), 481-488.
  5. Ge, M., 2003, Analysis of source location algorithms Part I: Overview and non-iterative methods, J. Acoustic emission, 21, 14-28.
  6. Geiger, L., 1912, Probability method for the determination of earthquake epicentres from the arrival time only, Bull. St. Louis. Univ. 8, 60-71.
  7. Goldberg, D.E., 1989, Genetic algorithms in search, optimization, and machine learning, Addison-Wedsley Publishing Company Inc., Reading. Massachusetts.
  8. Hendriyana, A., Bauer, K., Muksin, U., and Weber, M., 2018, AIC-based diffraction stacking for local earthquake locations at the Sumatran Fault (Indonesia). Geophy. J. Int, 213(2), 952-962. https://doi.org/10.1093/gji/ggy045
  9. Holland, J.H., 1975, Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence, University of Michigan Press, Ann Arbor, Michigan
  10. Jang, S.H., 2002. Characterization of stress-induced damage in Rock and its application on the analysis of rock damaged zone areound a deep tunnel, Ph.D. dissertation, National University of seoul, Korea
  11. KIGAM, 2006, A study on the safety monitoring techniques for underground space facilities, OAA2004004-2006(3), KIGAM, 406p.
  12. Kim, H.L., Jin, K.G., and Jeon, S.H., 2012, Labview genetic algorithm, Infinity Books, Seoul, Korea, 157-291
  13. Maeda, N., 1985, A method for reading and checking phase times in auto-processing system of seismic data. Zisin, 38, 365-379. https://doi.org/10.4294/zisin1948.38.3_365
  14. Moon, B,R., 2003, Genetic algorithms, DooYangSa, Seoul, Korea, 103-106
  15. Nelder, J. A., and Mead, R., 1965. A Simplex Method for Function Minimization, The Computer. J, 7(4), 308-313. https://doi.org/10.1093/comjnl/7.4.308
  16. Prugger, A. F., and Gendzwill, D. J., 1988, Microearthquake location: A nonlinear approach that makes use of a simplex stepping procedure. Bulletin of the Seismological Society of America, 78(2), 799-815. https://doi.org/10.1785/BSSA0780020799
  17. Xiao, Y.X., Feng, X.T., Hudson, J.A., Chen, B.R., Feng, G.L., and Liu, J.P., 2015, ISRM Suggested method for in situ microseismic monitoring of the fracturing process in rock masses., Rock Mech. Rock Eng., 49, 843-859
  18. Wong, J., Han, L., Bancroft, J. C., and Stewart, R. R., 2009, Automatic time-picking of first arrivals on noisy microseismic data. CSEG Conference Abstracts, 1-6.