• Title/Summary/Keyword: Generator set

Search Result 388, Processing Time 0.034 seconds

Broadcast Encryption System Using Secret Sharing and Subset Difference Methods (비밀분산 기법과 Subset Difference 기법을 이용한 브로드캐스트 암호시스템)

  • Lee, Jae Hwan;Park, Jong Hwan
    • Journal of Broadcast Engineering
    • /
    • v.20 no.1
    • /
    • pp.92-109
    • /
    • 2015
  • Broadcast encryption is a cryptographic primitive that allows a sender to securely broadcast a message to a set of receivers. The most influential broadcast encryption system was proposed in 2001 by Naor, Naor, Lotspiech, based on a pseudo-random generator and the Subset Difference (SD) method. In this paper, we suggest a new broadcast encryption system that is based on secret sharing and SD methods. On an efficiency aspect, our system achieves O(r) transmission cost, O($log^2n$) storage cost, and O(1) computational cost for the number n of users and the number r of revoked users. Compared to O(log n) computational cost in the previous SD method, our system has the advantage that it needs only constant-sized computational cost for decryption, regardless of the number n or r. On a security aspect, our system can achieve tighter security reduction than the previous SD method and the gap of security loss is about O(n log n). Moreover, our result shows that it is possible to give the effect of the SD method while using an information-theoretically secure key distribution technique as in the Complete Subtree method.

Development of PC-based and portable high speed impedance analyzer for biosensor (바이오센서를 위한 PC 기반의 휴대용 고속 임피던스 분석기 개발)

  • Kim, Gi-Ryon;Kim, Gwang-Nyeon;Heo, Seung-Deok;Lee, Seung-Hoon;Choi, Byeong-Cheol;Kim, Cheol-Han;Jeon, Gye-Rok;Jung, Dong-Keun
    • Journal of Sensor Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.33-41
    • /
    • 2005
  • For more convenient electrode-electrolyte interface impedance analysis in biosensor, a stand-alone impedance measurement system is required. In our study, we developed a PC-based portable system to analyze impedance of the electrochemical cell using microprocessor. The devised system consists of signal generator, programmable amplifiers, A/D converter, low pass filter, potentiostat, I/V converter, microprocessor, and PC interface. As a microprocessor, PIC16F877 which has the processing speed of 5 MIPS was used. For data acquisition, the sampling rate at 40 k samples/sec, resolution of 12 bit is used. RS-232 with 115.2 kbps speed is used for the PC communication. The square wave was used as stimuli signal for impedance analysis and voltage-controlled current measurement method of three-electrode-method were adopted. Acquired voltage and current data are calculated to multifrequency impedance signal after Fourier transform. To evaluate the implemented system, we set up the dummy cell as equivalent circuit of which was composed of resistor, parallel circuit of capacitor and resistor connected in parallel and measured the impedance of the dummy cell; the result showed that there exist accuracy within 5 % errors and reproduction within 1 % errors compared to output of Hioki LCR tester and HP impedance analyzer as a standard product. These results imply that it is possible to analyze electrode-electrolyte interface impedance quantitatively in biosensor and to implement the more portable high speed impedance analysis system compared to existing systems.

Rotor Speed-based Droop of a Wind Generator in a Wind Power Plant for the Virtual Inertial Control

  • Lee, Jinsik;Kim, Jinho;Kim, Yeon-Hee;Chun, Yeong-Han;Lee, Sang Ho;Seok, Jul-Ki;Kang, Yong Cheol
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1021-1028
    • /
    • 2013
  • The frequency of a power system should be kept within limits to produce high-quality electricity. For a power system with a high penetration of wind generators (WGs), difficulties might arise in maintaining the frequency, because modern variable speed WGs operate based on the maximum power point tracking control scheme. On the other hand, the wind speed that arrives at a downstream WG is decreased after having passed one WG due to the wake effect. The rotor speed of each WG may be different from others. This paper proposes an algorithm for assigning the droop of each WG in a wind power plant (WPP) based on the rotor speed for the virtual inertial control considering the wake effect. It assumes that each WG in the WPP has two auxiliary loops for the virtual inertial control, i.e. the frequency deviation loop and the rate of change of frequency (ROCOF) loop. To release more kinetic energy, the proposed algorithm assigns the droop of each WG, which is the gain of the frequency deviation loop, depending on the rotor speed of each WG, while the gains for the ROCOF loop of all WGs are set to be equal. The performance of the algorithm is investigated for a model system with five synchronous generators and a WPP, which consists of 15 doubly-fed induction generators, by varying the wind direction as well as the wind speed. The results clearly indicate that the algorithm successfully reduces the frequency nadir as a WG with high wind speed releases more kinetic energy for the virtual inertial control. The algorithm might help maximize the contribution of the WPP to the frequency support.

Estimation of Leg Collision Strength for Large Wind Turbine Installation Vessel (WTIV) (대형 해상풍력발전기 설치 선박(WTIV) Leg구조의 충돌 강도평가)

  • Park, Joo-Shin;Ma, Kuk-Yeol;Seo, Jung-Kwan
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.26 no.5
    • /
    • pp.551-560
    • /
    • 2020
  • Recently, the offshore wind power generator market is expected to grow significantly because of increased energy demand, reduced dependence on fossil fuel-based power generation, and environmental regulations. Consequently, wind power generation is increasing worldwide, and several attempts have been made to utilize offshore wind power. Norway's Petroleum Safety Authority (PSA) requires a leg-structure design with a collision energy of 35 MJ owing to the event of a collision under operation conditions. In this study, the results of the numerical analysis of a wind turbine installation vessel subjected to ship collision were set such that the maximum collision energy that the leg could sustain was calculated and compared with the PSA requirements. The current leg design plan does not satisfy the required value of 35 MJ, and it is necessary to increase the section modulus by more than 200 % to satisfy the regulations, which is unfeasible in realistic leg design. Therefore, a collision energy standard based on a reasonable collision scenario should be established.

Fuzzy Algorithms to Generate Level Controllers for Nuclear Power Plant Steam Generators (원전 증기 발생기 수위제어용 퍼지 알고리즘)

  • Moon, Byung-Soo;Park, Jae-Chang;Kim, Dong-Hwa;Kim, Byung-Koo
    • Nuclear Engineering and Technology
    • /
    • v.25 no.2
    • /
    • pp.222-232
    • /
    • 1993
  • In this paper, we present two sets of fuzzy algorithms for the steam generator level control ; one for the high power operations where the flow error is available and the other for the low power operations where the flow error is not available. These are converted to a PID type controller for the high power case and to a quadratic function form of a controller for the low power case. These controllers are implemented on the Compact Nuclear Simulator at Korea Atomic Energy Research Institute and tested by a set of four simulation experiments for each. For both cases, the results show that the total variation of the level error and of the flow error are about 50% of those by the PI controllers with about one half of the control action. For the high power case, this is mainly due to the fact that a combination of two PD type controllers in the velocity algorithm form rather than a combination of two PI type controllers in the position algorithm form is used. For the low power case, the controller is essentially a PID type with a very small integral component where the average values for the derivative component input and for the controller output are used.

  • PDF

Study on Performance Evaluation of Dental X-ray Equipment (치과 방사선 발생기의 성능평가에 관한 연구)

  • Jung, Jae-Eun;Jung, Jae-Ho;Kang, Hee-Doo;Lee, Jong-Woong;Ra, Keuk-Hwan
    • Korean Journal of Digital Imaging in Medicine
    • /
    • v.11 no.2
    • /
    • pp.115-119
    • /
    • 2009
  • I think this will be valuable reference for assuring consistency and homogeneity of clarity and managing dental radiation equipment by experimentation of dental radiation equipment permanent which based on KS C IEC 61223-3-4 standard and KS C IEC 61223-2-7. Put a dental radiation generator and experiment equipment as source and film(sensor) length within 30 em, place the step-wedge above the film(sensor). Tie up tube voltage 60 kVp, tube current 7 mA and then get an each image through CCD sensor and film by changing the exposure time as 0.12sec, 0.25sec, 0.4sec. Repeat the test 5times as a same method. Measure the concentration of each stage of film image, which gained by experiment, using photometer. And the image that gained by CCD sensor, analyze the pixel value's change by using image J, which is analyzing image program provided by NIH(National Institutes of Health). In case of film, while 0.12sec and 0.25sec show regular rising pattern of density gap as exposure time's increase, 0.4sec shows low rather than 0.12sec and 0.25sec. In case of CCD sensor density test, the result shows opposite pattern of film. This makes me think that pixels of CCD's sensor can have 0~255 value but it becomes saturation if the value is over 255. The way that getting clear reception during decreasing human's exposed radiation is one of maintaining an equipment as a best condition. So we should keeping a dental radiation equipment's condition steadily through cyclic permanent test after factor examination. Even digital equipment doesn't maintain a permanent, it can maintain a clarity by post processing of image so that hard to set it as standard of permanent test. Therefore it would be more increase the accuracy that compare a film as standard image. Thus I consider it will be an important measurement to care for dental radiation equipment and warrant homogeneity, consistency of dental image's clarity through comparing pattern which is the result from factor test against cyclic permanent test.

  • PDF

Simulation and Evaluation of ECT Signals From MRPC Probe in Combo Calibration Standard Tube Using Electromagnetic Numerical Analysis (전자기 수치 해석을 이용한 Combo 표준 보정 시험편의 MRPC Probe 와전류 신호 모사 및 평가)

  • Yoo, Joo-Young;Song, Sung-Jin;Jung, Hee-Jun;Kong, Young-Bae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.26 no.2
    • /
    • pp.90-98
    • /
    • 2006
  • Signals captured from a Combo calibration standard tube paly a crucial role in the evaluation of motorized rotating pancake coil (MRPC) probe signals from steam generator (SG) tubes in nuclear power plants (NPPs). Therefore, the Combo tube signals should be consistent and accurate. However, MRPC probe signals are very easily affected by various factors around the tubes so that they can be distorted in their amplitudes and phase angles which are the values specifically used in the evaluation. To overcome this problem, in this study, we explored possibility of simulation to be used as a practical calibration tool far the evaluation of real field signals. For this purpose, we investigated the characteristics of a MRPC probe and a Combo tube. And then using commercial software (VIC-3D) we simulated a set of calibration signals and compared to the experimental signals. From this comparison, we verified the accuracy of the simulated signals. Finally, we evaluated two defects using the simulated Combo tube signals, and the results were compared with those obtained using the actual field calibration signals.

Development of Heat Dissipation Measuring System for 1.2-kW BLDC Motor (1.2kW 급 BLDC 모터의 열 발산 측정 시스템 개발)

  • Lee, Injun;Ye, Jungwoo;Lee, Daehun;Hwang, Pyung;Shim, Jaesool
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.11
    • /
    • pp.1423-1428
    • /
    • 2013
  • In this study, a heat dissipation measurement system is developed to analyze a 1.2-kW BLDC motor. It is important to check the temperature of the motor because an increase in temperature causes problems in the motor insulations, which in turn influences the motor life. A generator for a vehicle is installed to set up a load. We changed the load from 165 to 495 W. While the rpm varies from 2000 to 4000 under various load conditions, the changes in temperature were measured for the operating period by using a thermocouple. The results of experiments conducted under natural convection conditions suggest that the temperature was not stationary with the rpm, load, and coil of the motor and it kept increasing over $120^{\circ}C$. However, under forced convection conditions, the temperature stationarily reached $84^{\circ}C$ after 4000 s. The difference between the maximum and the minimum temperatures was $10-26^{\circ}C$ with an increase in the rpm and load. The orders of high temperature were as follows: motor coil (Ch#1), side of motor surface (Ch#5), inside of motor cap (Ch#2), upper side of motor surface (Ch#4), and inner wall of the motor (Ch#3).

The New X-ray Induced Electron Emission Spectrometer

  • Yu.N.Yuryev;Park, Hyun-Min;Lee, Hwack-Ju;Kim, Ju-Hwnag;Cho, Yang-Ku;K.Yu.Pogrebitsky
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.5-6
    • /
    • 2002
  • The new spectrometer for X-ray Induced Electron Emission Spectroscopy (XIEES) .has been recently developed in KRISS in collaboration with PTI (Russia). The spectrometer allows to perform research using the XAFS, SXAFS, XANES techniques (D.C.Koningsberger and R.Prins, 1988) as well as the number of techniques from XIEES field(L.A.Bakaleinikov et all, 1992). The experiments may be carried out with registration of transmitted through the sample x-rays (to investigate bulk samples) or/and total electron yield (TEY) from the sample surface that gives the high (down to several atomic mono-layers in soft x-ray region) near surface sensitivity. The combination of these methods together give the possibility to obtain a quantitative information on elemental composition, chemical state, atomic structure for powder samples and solids, including non-crystalline materials (the long range order is not required). The optical design of spectrometer is made according to Johannesson true focusing schematics and presented on the Fig.1. Five stepping motors are used to maintain the focusing condition during the photon energy scan (crystal angle, crystal position along rail, sample goniometer rail angle, sample goniometer position along rail and sample goniometer angle relatively of rail). All movements can be done independently and simultaneously that speeds up the setting of photon energy and allows the using of crystals with different Rowland radil. At present six curved crystals with different d-values and one flat synthetic multilayer are installed on revolver-type monochromator. This arrangement allows the wide range of x-rays from 100 eV up to 25 keV to be obtained. Another 4 stepping motors set exit slit width, sample angle, channeltron position and x-ray detector position. The differential pumping allows to unite vacuum chambers of spectrometer and x-ray generator avoiding the absorption of soft x-rays on Be foil of a window and in atmosphere. Another feature of vacuum system is separation of walls of vacuum chamber (which are deformed by the atmospheric pressure) from optical elements of spectrometer. This warrantees that the optical elements are precisely positioned. The detecting system of the spectrometer consists of two proportional counters, one scintillating detector and one channeltron detector. First proportional counter can be used as I/sub 0/-detector in transmission mode or by measuring the fluorescence from exit slit edge. The last installation can be used to measure the reference data (that is necessary in XANES measurements), in this case the reference sample is installed on slit knife edge. The second proportional counter measures the intensity of x-rays transmitted through the sample. The scintillating detector is used in the same way but on the air for the hard x-rays and for alignment purposes. Total electron yield from the sample is measured by channeltron. The spectrometer is fully controlled by special software that gives the high flexibility and reliability in carrying out of the experiments. Fig.2 and fig.3 present the typical XAFS spectra measured with spectrometer.

  • PDF

Performance Evaluation of Aprons according to Lead Equivalent and Form Types (방사선 방어용 앞치마의 납당량, 형태에 따른 성능 평가)

  • Kim, Ki-Won;Choi, Sung-Hyun;Kim, Ki-Yeol;Lee, Ik-Pyo;Hwang, Sun-Gwang;Dong, Kyung-Rae
    • Journal of Radiation Industry
    • /
    • v.10 no.4
    • /
    • pp.219-225
    • /
    • 2016
  • The apron is one of the essential protectors to reduce the exposure dose of radiological technologists. This study is to provide a guideline for purchasing the aprons with excellent performance and to help reducing the exposure dose by measuring the shielding ration and uniformity of aprons according to lead equivalent and form types. The shielding ratio of aprons were measured by using radiation generator and dosimeter. Exposure conditions were 81 kVp, 25 mAs, source to image receptor distance (SID) 100 cm and field of view (FOV) $17^{{\prime}{\prime}}{\times}17^{{\prime}{\prime}}$. Exposure areas for front type and around type aprons were divided into 9 areas and for 2 pieces type aprons were divided into 3 areas of top and 4 areas of skirt. The uniformity of aprons were measured by using fluoroscopy and Image J. The 4 regions of interest (ROI) were set into acquired images and measured uniformity by measuring the standard deviation of pixel intensity in ROIs. In continuous shielding ration measurement of aprons according to exposure area, there was not statistical significance (P>0.05). In ANOVA test of aprons, there was statistical significance (P<0.01). In the results of sheilding ratio, although the aprons had equal lead equivalent, there were difference in shielding ratio from 83.59% to 98.15%. In the results of uniformity, the front type aprons with equal lead equivalent indicated the similar uniformity. However, the around type and 2 pieces type apron with equal lead equivalent indicated the different uniformity each other, from 1.8 to 22.2. If the performance evaluation in this study were conducted regularly before and after purchase the aprons, the exposure does to patients and radiological technologists could be reduced.