• 제목/요약/키워드: Generator Stator Windings

검색결과 106건 처리시간 0.019초

Characteristics of Insulation Diagnosis and Failure in Gas Turbine Generator Stator Windings

  • Kim, Hee-Dong
    • Journal of Electrical Engineering and Technology
    • /
    • 제9권1호
    • /
    • pp.280-285
    • /
    • 2014
  • In order to evaluate the insulation deterioration in the stator windings of five gas turbine generators(137 MVA, 13.8 kV) which has been operated for more than 13 years, diagnostic test and AC dielectric breakdown test were performed at phases A, B and C. These tests included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B and C) of No. 1 generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable and bad level to the insulation condition. Overall analysis of the results suggested that the generator stator windings were indicated serious insulation deterioration and patterns of the PD in all three phases were analyzed to be internal, slot and spark discharges. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. The breakdown voltage at phases A, B and C of No. 1 generator stator windings failed at 28.0 kV, 17.9 kV, and 21.3 kV, respectively. The breakdown voltage was lower than that expected for good-quality windings (28.6 kV) in a 13.8kV class generator. In the AC dielectric breakdown and diagnostic tests, there was a strong correlation between the breakdown voltage and the voltage at which charging current increases abruptly ($P_{i1}$, $P_{i2}$).

수냉각 발전기 고정자의 기계적 건전성 평가방법 (A Study on the Systematic Mechanical Integrity Evaluation Methods of Water-Cooled Generator Stator Windings)

  • 배용채;김희수;이욱륜;이두영;최홍일;연세흠
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.3059-3066
    • /
    • 2008
  • It is reported that the life of generator stator windings is expected about 30 years and a leak and water absorption phenomena can be progressed by fatigue, vibration, and corrosion. The water-cooled generator stator windings which were operated over 15 years are over 20 units and the mechanical problems such as leak and water absorption were found in the generator stator windings. In this paper, the systematic mechanical integrity evaluation methods which are applied to the water-cooled generator stator windings within the country are introduced.

  • PDF

Analysis of Insulation Diagnosis and Failure in Stator Windings of Air-Cooled Gas Turbine Generator

  • Kim, Hee-Dong;Kong, Tae-Sik;Kim, Kyeong-Yeol
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제2권3호
    • /
    • pp.421-424
    • /
    • 2016
  • In order to evaluate the insulation deterioration in the stator windings of air-cooled gas turbine generators(119.2 MVA, 13.8 kV) which has been operating for more than 15 years, diagnostic test and AC dielectric breakdown test were performed on phases A, B and C. Diagnostic test included measurements of AC current, dissipation factor, partial discharge (PD) magnitude and capacitance. ${\Delta}I$ and ${\Delta}tan{\delta}$ in all three phases (A, B, and C) of generator stator windings showed that they were in good condition but PD magnitude indicated marginally serviceable condition. After the diagnostic test, an AC overvoltage test was performed by gradually increasing the voltage applied to the generator stator windings until electrical insulation failure occurred, in order to determine the breakdown voltage. Although phase A of generator stator windings failed at breakdown voltage of 29.0 kV, phases B and C endured the 29.0 kV. The breakdown voltage in all three phases was higher than that expected for good-quality windings (28.6 kV) in a 13.8 kV class generator.

A Study on Insulation Properties of Global VPI Type Generator through Replacement of Stator Windings

  • Kong, Taesik;Kim, Heedong;Lee, Sooho;Park, Jaehyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • 제3권2호
    • /
    • pp.113-117
    • /
    • 2017
  • As the competition in the manufacturing market for small and medium sized generators is intensifying, there is increasing pressure to reduce production cost. Manufacturing the generator stator windings with global vacuum pressure impregnation (GVPI) is a very effective way to reduce costs. However, the stator winding has a fatal disadvantage in that the insulation wears due to vibration in the slot. KEPRI (KEPCO Research Institute) conducted insulation diagnosis for three generators in KOMIPO (Korea Midland Power Co., Ltd.) which were manufactured by GVPI and operated for about 17 years. Insulation diagnosis showed that deterioration of insulation has progressed significantly. Therefore, KEPRI recommended replacing the stator windings of all three generators. In this paper, the insulation properties of the generator stator winding with global GVPI are described by comparing and analyzing the insulation diagnosis results and visual inspection for stator windings.

수력 발전기 권선에서의 운전중 부분방전 측정기법 (On-line partial discharge measurement techniques of hydro-generator windings)

  • 황동하;김진봉;김용주;박명수;김택수
    • 대한전기학회논문지
    • /
    • 제45권2호
    • /
    • pp.294-300
    • /
    • 1996
  • In hydro-generator, a groundwall insulation of stator windings gradually deteriorates due to mechanical, thermal, electrical and environmental stresses. These stresses combine to result in loose windings, delamination of the stator insulation and/or electrical tracking of the endwinding, all of which can lead to stator insulation failures. Conventionally, off-line tests such as partial discharge measurement, DC/AC current and .DELTA.tan.delta. tests has been used for estimation of winding condition. However, off-line test requires large power supply and generator outage. In addition, major cause of insulation problems such as loose wedges and slot dischages may not be found with off-line diagnoses. This paper introduces the on-line partial discharge measurement techniques using frequency spectrum analyzer(FSA) for the generator stator windings. The experimental results from the UIAM #1 hydro-generator confirms a optimistic application of on-line generator diagnosis method as a reliable tool for evaluation of winding condition.

  • PDF

발전기 운전에 따른 고정자 권선의 진동 특성 변화 (A Study on the Change of Dynamic Characteristics of Stator Windings due to Generator Operation)

  • 김희수;배용채;이두영;김연환;이현
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.1029-1033
    • /
    • 2006
  • During operation of generator, the excitation force with 120Hz always exist irrespective of No. of poles. Therefore the vibration is generated in the stator end windings and the micro-crack is grown up inside the bars. After all, coolant water is leaked outside the bars or the stator is moved and is worn out. What is more, one bar is touched with another bar so a short circuit may frequently happen in operation. In order to prevent it from occurring, the evaluation of mechanical integrity for generator stator windings is carried out periodically during overhaul period. This help troublesome end windings to complement with insulation material and to change vibration characteristics. In this paper, the evaluation of mechanical integrity for generator stator windings is described and the change of vibration characteristics is analysed.

  • PDF

Inner Evaporative Cooling Wind Power Generator with Non-overlapping Concentrated Windings

  • Li, Wang;Wang, Haifeng
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • 제3권1호
    • /
    • pp.15-19
    • /
    • 2014
  • As the space of the wind power generator stator end is limited, it is difficult for us to place the inner evaporative cooling system in it. We use the non-overlapping concentrated windings scheme to solve the placing and cooling problem. The characteristic of a 5MW direct-driven permanent magnet generator with non-overlapping concentrated windings were analyzed under no-load, rating-load and short-circuit by (Finite Element Method) FEM for verification of design. We studied the connection methods of the stator windings and designed the end connection member. The heat dissipation of the stator end was simulated by FEM, the result showed that the end cooling could satisfy the wind generator operation needs. These results show that the direct-driven permanent magnet wind power generators with non-overlapping concentrated windings and inner evaporative cooling system can solve the cooling problem of wind power generator, and obtain good performance at the same time.

흡습된 수냉각 발전기 고정자 권선의 전기적 특성 (Electrical Properties of Wet Bars in Water-cooled Generator Stator Windings)

  • 김병래;김희동
    • 한국전기전자재료학회논문지
    • /
    • 제25권10호
    • /
    • pp.817-823
    • /
    • 2012
  • Insulation breakdown of water-cooled generator stator windings occurs frequently due to leakage of cooling water and absorption into the insulation material. Leakage and absorption problems of water-cooled stator windings are often found during regular preventive maintenance. To evaluate cooling water leakage and absorption, diagnostic tests were performed on two water-cooled turbine generators, which have been in service for 13 and 17 years, respectively. The test results of the measured electrical properties such as dissipation factor($tan{\delta}$), capacitance and AC leakage current for water-cooled generator stator windings with wet bars are reported in this paper.

운전중인 대형 터빈발전기에서 절연상태 평가 (Assessment of Insulation Condition in Operating Large Turbine Generator)

  • 김희동
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제53권6호
    • /
    • pp.324-329
    • /
    • 2004
  • Six stator slot couplers(SSC) and a flux probe sensor installed on the stator winding slots of large turbine generator. Assessment of insulation condition has been based upon the measurements of partial discharge(PD) of stator windings and shorted-turn of rotor windings in operating large turbine generator. The maximum PD magnitude(Qm), normalized quantify number(NQN), PD pattern and shorted-turn were measured using on-line insulation condition monitoring system. The NQN and Qm of slot PD side in the phase A are indicated the highest value in six SSC sensors. Monitoring system results showed that discharge at conductor surface and internal discharge were detected at the surface of stator winding and in voids of the groundwall insulation. Insulation of stator and rotor windings in large turbine generator was judged to be in good condition.

고압전동기 고정자 권선에서 부분방전 펄스의 전송 (Propagation of Partial Discharge Pulse in High Voltage Motor Stator Windings)

  • 김희동
    • 대한전기학회논문지:전기물성ㆍ응용부문C
    • /
    • 제52권11호
    • /
    • pp.512-515
    • /
    • 2003
  • This paper is to investigate how partial discharge pulse signal can flow in 6.6㎸ motor stator windings. Pulse propagation is experimentally analyzed in stator windings using a variety of frequency-domain techniques. The experiments were performed on two stator windings in the laboratory. Spectrum analyzer(9KHz to 3㎓) with tracking generator(100kHz to 3㎓) was used. Sweep time of the tracking generator was looms. The frequency spectrum of the response signal was detected by active FET probe(1㎓). The active FET probe has a flat amplitude response up to 1㎓ without high frequency attenuation. The stator winding acts as a low-pass filter below 600KHz, the high-frequency components being highly declined. The resonance peaks show about 1.1MHz and 2MHz in low frequency of No. 1 and No. 2 stator windings, respectively. This low-frequency range indicates that attenuation is low. The peaks of partial discharge magnitude show about 900MHz, 1.6MHz in No. 1 stator winding and about 800KHz, 1.4MHz in No. 2 stator winding.