• 제목/요약/키워드: Generator Out-of-Step

검색결과 32건 처리시간 0.028초

충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델 (Wear Progress Model by Impact Fretting in Steam Generator Tube)

  • 박치용;이정근;김태룡
    • 대한기계학회논문집A
    • /
    • 제32권10호
    • /
    • pp.817-822
    • /
    • 2008
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progress model for impact-fretting wear has been investigated and proposed. The proposed wear progress model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

충격 프레팅에 의한 증기발생기 세관 마모손상 진행모델 (Wear Progress Model by Impact Fretting in Steam Generator Tube)

  • 이정근;박치용;김태룡;조선영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.1684-1689
    • /
    • 2007
  • Fretting wear is one of the important degradation mechanisms of steam generator tubes in the nuclear power plants. Especially, impact fretting wear occurred between steam generator tubes and tube support plates or anti-vibration bar. Various tests have been carried out to investigate the wear mechanisms and to report the wear coefficients. Those are fruitful to get insight for the wear damage of steam generator tubes; however, most wear researches have concentrated on sliding wear of the steam generator tubes, which may not represent the wear loading modes in real plants. In the present work, impact fretting tests of steam generator tube were carried out. A wear progression model for impact-fretting wear has been investigated and proposed. The proposed wear progression model of impact-fretting wear is as follows; oxide film breaking step at the initial stage, and layer formation step, energy accumulation step and finally particle torn out step which is followed by layer formation in the stable impact-fretting progress. The wear coefficient according to the work-rate model has been also compared with one between tube and support.

  • PDF

송전선로 고장제거 지연에 따른 동기 탈조 계전기 동작 검토 (A Study on Out-of-Step Relay Operation due to Delayed Fault Clearing in Transmission Line)

  • 박지경;김광현;김철환;유영식;양정재
    • 전기학회논문지
    • /
    • 제66권10호
    • /
    • pp.1466-1473
    • /
    • 2017
  • Generally, electrical torque in synchronous generator is balanced with the rotor mechanical torque under steady-state condition. Thus, the synchronous generator rotor rotates at constant speed. However, under fault condition, the electrical torque output is suddenly decreased and the sum of both torques does not remain constant. If the mechanical torque is not decreased at the same time, the generator rotor would accelerate. Therefore, this accelerating generator rotates at different speeds with respect to other generators in the power system. This phenomena is called as Out-of-Step (OOS). In this paper, we presented a certain two-step type quadrilateral OOS relay setting, which is applicable in actual field, and examined the validity of its setting value with OOS simulation conditions due to delayed fault clearing in transmission line. In order to conduct the study of OOS relay characteristics, we checked the impedance locus and generator output characteristics under the various delayed fault clearing conditions. Moreover, we proposed a countermeasure for avoiding the misoperation of OOS relay during the stable swing by modifying the setting values.

복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘 (A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a Trajectory of Complex Power)

  • 허정용;김철환;권오상
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권5호
    • /
    • pp.217-225
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now. Most common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of-step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm which is based on the complex power and the estimated mechanical power, is presented. This algorithm may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part II: 복소전력의 궤적 변화를 이용한 동기탈조 검출 알고리즘 (A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part II : Out-of-Step Detection Algorithm using a trajectory of Complex power)

  • 권오상;김철환;박남옥;채영무
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2005년도 제36회 하계학술대회 논문집 A
    • /
    • pp.313-315
    • /
    • 2005
  • In a power system, an out-of-step condition causes a variety of risk such as serious damage to system elements, tripping of loads and generators, mal-operation of relays, etc. Therefore, it is very important to detect the out-of-step condition and take a proper measure. Several out-of-step detection methods have been employed in relays until now Mo,;t common method used for an out-of-step detection is based on the transition time through the blocking impedance area in R-X diagram. Also, the R-R dot out-of- step relay, the out-of-step prediction method and the adaptive out-of-step relay using the equal area criterion (EAC) and Global Positioning Satellite (GPS) technology have been developed. This paper presents the out-of-step detection algorithm using the time variation of the complex power. The complex power is calculated and the mechanical power of the generator is estimated by using the electrical power, and then the out-of-step detection algorithm, which is based on the complex Power and the estimated mechanical power, is presented. This algorithm, may detect the instant when the generator angle passes the Unstable Equilibrium Point (UEP). The proposed out-of-step algorithm is verified and tested by using Alternative Transient Program/Electromagnetic Transient Program (ATP/EMTP) MODELS.

  • PDF

전압의 주파수 변화를 이용한 동기탈조 검출 알고리즘에 관한 연구 (A Study on the Out-of-Step Detection Algorithm using Voltage Frequency Variation)

  • 소광훈;허정용;김철환
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2003년도 하계학술대회 논문집 A
    • /
    • pp.335-337
    • /
    • 2003
  • The protection against transient instability and consequent out-of-step condition is a major concern for the utility. The unstable system may cause serious damage to system elements such as generators and transmission lines. Therefore, out-of-step detection is essential to operate a system safely. This paper presents the Out-of-Step detection algorithm using voltage frequency variation. The digital filters based on Discrete Fourier Transforms (DFT) to calculate the frequency of a sinusoid voltage are used, and the generator angle is estimated using the variation of the calculated voltage frequency. The proposed out-of-step algorithm is based on the assessment of a transient stability using equal area criterion. The proposed out-of-step algorithm is verified and tested by using EMTP MODELS.

  • PDF

전압의 주파수 편의를 이용한 동기탈조 검출 알고리즘에 관한 연구 (A Study on the Out-of-Step Detection Algorithm using Frequency Deviation of the Voltage)

  • 소광훈;허정용;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제53권3호
    • /
    • pp.175-181
    • /
    • 2004
  • The protection against transient instability and consequent out-of-step condition is a major concern for the utility industry. Unstable system may cause serious damage to system elements such as generators and transmission lines. Therefore, out-of-step detection is essential to operate a system safely. The detection of out-of-step is generally based upon the rate of movement of the apparent impedance. However such relay monitors only the apparent impedance which may not be sufficient to correctly detect all forms of out-of-step and cannot cope with out-of-step for a more complex type of instability such as very fast power swing. This paper presents the out-of-step detection algorithm using voltage frequency deviation. The digital filters based on discrete Fourier transforms (DFT) to calculate the frequency of a sinusoid voltage are used, and the generator angle is estimated using the deviation of the calculated frequency component of the voltage. The proposed out-of-step algorithm is based on the assessment of a transient stability using equal area criterion. The proposed out-of-step algorithm is verified and tested by using EMTP MODELS.

복소전력의 변화율을 이용한 동기탈조 검출 알고리즘에 관한 연구-Part I: 복소평면에서의 복소전력의 궤적변화 (A Study on the Out-of-Step Detection Algorithm using Time Variation of Complex Power-Part I : The Variation of Complex Power Trajectory in Complex Plane)

  • 권오상;김철환
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제54권7호
    • /
    • pp.345-351
    • /
    • 2005
  • An out-of-step condition results from the loss of the synchronism of the generators. A disturbance in a power system causes the generator angle to oscillate. When there is a severe disturbance such as a heavy current fault loss of major generation or loss of a large block of load, the oscillation can be severe and even increase largely and finally the out-of-step condition may un. During the power swing and out-of-step conditions, the apparent impedance at a relay location changes, and the power flow also changes as the angle difference is varied. This paper presents a method to analyze the trajectory of complex power during a power swing and out-of-step condition. The trajectory of the complex power is analyzed when a power swings and a fault occurs. Moreover, the complex power is analyzed when the ratios between the voltages at both sides and the line impedances are changed. These methods are verified through simulation using the ATP/EMTP MODELS.

공작기계의 고장원인을 효과적으로 생성하기 위한 Switching Function Generator 개발 (Development of Switching Function Generator for Fault Reasons of CNC Machine Tool)

  • 김동훈;김도연;김선호;이은애;한기상
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2002년도 춘계학술대회 논문집
    • /
    • pp.48-52
    • /
    • 2002
  • The fault analysis of the CNC machine tool which is controlled sequentially by PLC is generally based on ladder diagram. When machine tool has faults, it takes a lot of operator's experiences and times to identify logical relationship because ladder diagram is a step structured language. Therefore the technologies of finding out fault reasons automatically is necessary. In this paper, the SFG(Switching Function Generator) system is developed to analysis fault reasons correctly. The SF(Switching Function) and SSF(Step Switching Function) generated from SFG based on ladder diagram are experimented to identify the performance of SFG.

  • PDF

원자력발전소 비상디젤발전기 상태감시 기술 적용 연구 (Application Study of Condition Monitoring Technology for Emergency Diesel Generator at Nuclear Power Plant)

  • 최광희;박종혁;박종은;이상국
    • 동력기계공학회지
    • /
    • 제13권1호
    • /
    • pp.53-58
    • /
    • 2009
  • The emergency diesel generator(EDG) of the nuclear power plant is designed to supply the power to the nuclear reactor on Station Black Out(SBO) condition. The operation reliability of onsite emergency diesel generator should be ensured by a conditioning monitoring system designed to monitor and analysis the condition of diesel generator. For this purpose, we have developing the technologies of condition monitoring for the wolsong unit 3&4 standby diesel generator including diesel engine performance. In this paper, technologies of condition monitoring for the wolsong standby diesel generator are described about three step. First is for selection of operating parameter for monitoring. Second is for technologies of online condition monitoring, Third is for monitoring of engine performance.

  • PDF