• Title/Summary/Keyword: Generative Information Extraction

Search Result 13, Processing Time 0.03 seconds

GAN-based Color Palette Extraction System by Chroma Fine-tuning with Reinforcement Learning

  • Kim, Sanghyuk;Kang, Suk-Ju
    • Journal of Semiconductor Engineering
    • /
    • v.2 no.1
    • /
    • pp.125-129
    • /
    • 2021
  • As the interest of deep learning, techniques to control the color of images in image processing field are evolving together. However, there is no clear standard for color, and it is not easy to find a way to represent only the color itself like the color-palette. In this paper, we propose a novel color palette extraction system by chroma fine-tuning with reinforcement learning. It helps to recognize the color combination to represent an input image. First, we use RGBY images to create feature maps by transferring the backbone network with well-trained model-weight which is verified at super resolution convolutional neural networks. Second, feature maps are trained to 3 fully connected layers for the color-palette generation with a generative adversarial network (GAN). Third, we use the reinforcement learning method which only changes chroma information of the GAN-output by slightly moving each Y component of YCbCr color gamut of pixel values up and down. The proposed method outperforms existing color palette extraction methods as given the accuracy of 0.9140.

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

Purchase Information Extraction Model From Scanned Invoice Document Image By Classification Of Invoice Table Header Texts (인보이스 서류 영상의 테이블 헤더 문자 분류를 통한 구매 정보 추출 모델)

  • Shin, Hyunkyung
    • Journal of Digital Convergence
    • /
    • v.10 no.11
    • /
    • pp.383-387
    • /
    • 2012
  • Development of automated document management system specified for scanned invoice images suffers from rigorous accuracy requirements for extraction of monetary data, which necessiate automatic validation on the extracted values for a generative invoice table model. Use of certain internal constraints such as "amount = unit price times quantity" is typical implementation. In this paper, we propose a noble invoice information extraction model with improved auto-validation method by utilizing table header detection and column classification.

An analysis of terminological definitions (전문용어의 정의문 분석)

  • Lee Hae-Yun
    • Koreanishche Zeitschrift fur Deutsche Sprachwissenschaft
    • /
    • v.7
    • /
    • pp.145-163
    • /
    • 2003
  • In this paper, we examined various definitions of terminological definition for the extraction of terminological information from corpora. After we reviewed researches at the lexicography and at the terminology, we introduced the qualia structure of Generative Lexicon (Pustejovsky 1995) for the purpose of analyzing terminological definitions. By means of the qualia structure, we analyzed the definitions which are presented at the terminological dictionaries. As a result, we confirmed that the terminological definitions can be discomposed into 4 subtypes of qualia structure. Based on this examination, we analyzed terminological definitions of articles at a newspaper and showed the usefulness of the qualia structure at the extraction of terminological definitions from the corpora.

  • PDF

Vehicle Detection at Night Based on Style Transfer Image Enhancement

  • Jianing Shen;Rong Li
    • Journal of Information Processing Systems
    • /
    • v.19 no.5
    • /
    • pp.663-672
    • /
    • 2023
  • Most vehicle detection methods have poor vehicle feature extraction performance at night, and their robustness is reduced; hence, this study proposes a night vehicle detection method based on style transfer image enhancement. First, a style transfer model is constructed using cycle generative adversarial networks (cycleGANs). The daytime data in the BDD100K dataset were converted into nighttime data to form a style dataset. The dataset was then divided using its labels. Finally, based on a YOLOv5s network, a nighttime vehicle image is detected for the reliable recognition of vehicle information in a complex environment. The experimental results of the proposed method based on the BDD100K dataset show that the transferred night vehicle images are clear and meet the requirements. The precision, recall, mAP@.5, and mAP@.5:.95 reached 0.696, 0.292, 0.761, and 0.454, respectively.

Improved Cycle GAN Performance By Considering Semantic Loss (의미적 손실 함수를 통한 Cycle GAN 성능 개선)

  • Tae-Young Jeong;Hyun-Sik Lee;Ye-Rim Eom;Kyung-Su Park;Yu-Rim Shin;Jae-Hyun Moon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.908-909
    • /
    • 2023
  • Recently, several generative models have emerged and are being used in various industries. Among them, Cycle GAN is still used in various fields such as style transfer, medical care and autonomous driving. In this paper, we propose two methods to improve the performance of these Cycle GAN model. The ReLU activation function previously used in the generator was changed to Leaky ReLU. And a new loss function is proposed that considers the semantic level rather than focusing only on the pixel level through the VGG feature extractor. The proposed model showed quality improvement on the test set in the art domain, and it can be expected to be applied to other domains in the future to improve performance.

Hierarchical Flow-Based Anomaly Detection Model for Motor Gearbox Defect Detection

  • Younghwa Lee;Il-Sik Chang;Suseong Oh;Youngjin Nam;Youngteuk Chae;Geonyoung Choi;Gooman Park
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.6
    • /
    • pp.1516-1529
    • /
    • 2023
  • In this paper, a motor gearbox fault-detection system based on a hierarchical flow-based model is proposed. The proposed system is used for the anomaly detection of a motion sound-based actuator module. The proposed flow-based model, which is a generative model, learns by directly modeling a data distribution function. As the objective function is the maximum likelihood value of the input data, the training is stable and simple to use for anomaly detection. The operation sound of a car's side-view mirror motor is converted into a Mel-spectrogram image, consisting of a folding signal and an unfolding signal, and used as training data in this experiment. The proposed system is composed of an encoder and a decoder. The data extracted from the layer of the pretrained feature extractor are used as the decoder input data in the encoder. This information is used in the decoder by performing an interlayer cross-scale convolution operation. The experimental results indicate that the context information of various dimensions extracted from the interlayer hierarchical data improves the defect detection accuracy. This paper is notable because it uses acoustic data and a normalizing flow model to detect outliers based on the features of experimental data.

Traffic Data Generation Technique for Improving Network Attack Detection Using Deep Learning (네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구)

  • Lee, Wooho;Hahm, Jaegyoon;Jung, Hyun Mi;Jeong, Kimoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, various approaches to detect network attacks using machine learning have been studied and are being applied to detect new attacks and to increase precision. However, the machine learning method is dependent on feature extraction and takes a long time and complexity. It also has limitation of performace due to learning data imbalance. In this study, we propose a method to solve the degradation of classification performance due to imbalance of learning data among the limit points of detection system. To do this, we generate data using Generative Adversarial Networks (GANs) and propose a classification method using Convolutional Neural Networks (CNNs). Through this approach, we can confirm that the accuracy is improved when applied to the NSL-KDD and UNSW-NB15 datasets.

A Developing a Machine Leaning-Based Defect Data Management System For Multi-Family Housing Unit (기계학습 알고리즘 기반 하자 정보 관리 시스템 개발 - 공동주택 전용부분을 중심으로 -)

  • Park, Da-seul;Cha, Hee-sung
    • Korean Journal of Construction Engineering and Management
    • /
    • v.24 no.5
    • /
    • pp.35-43
    • /
    • 2023
  • Along with the increase in Multi-unit housing defect disputes, the importance of defect management is also increased. However, previous studies have mostly focused on the Multi-unit housing's 'common part'. In addition, there is a lack of research on the system for the 'management office', which is a part of the subject of defect management. These resulted in the lack of defect management capability of the management office and the deterioration of management quality. Therefore, this paper proposes a machine learning-based defect data management system for management offices. The goal is to solve the inconvenience of management by using Optical Character Recognition (OCR) and Natural Language Processing (NLP) modules. This system converts handwritten defect information into online text via OCR. By using the language model, the defect information is regenerated along with the form specified by the user. Eventually, the generated text is stored in a database and statistical analysis is performed. Through this chain of system, management office is expected to improve its defect management capabilities and support decision-making.

Semi-Supervised Learning for Sentiment Phrase Extraction by Combining Generative Model and Discriminative Model (의견 어구 추출을 위한 생성 모델과 분류 모델을 결합한 부분 지도 학습 방법)

  • Nam, Sang-Hyob;Na, Seung-Hoon;Lee, Ya-Ha;Lee, Yong-Hun;Kim, Jun-Gi;Lee, Jong-Hyeok
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2008.06c
    • /
    • pp.268-273
    • /
    • 2008
  • 의견(Opinion) 분석은 도전적인 분야로 언어 자원 구축, 문서의 Sentiment 분류, 문장 내의 의견 어구 추출 등의 다양한 문제를 다룬다. 이 중 의견 어구 추출문제는 단순히 문장이나 문서 단위로 분류하는 수준을 뛰어 넘는 문장 내 의견 어구를 추출하는 문제로 최근 많은 관심을 받고 있는 연구 주제이다. 그러나 의견 어구 추출에 대한 기존 연구는 문장 내 의견 어구부분이 태깅(tagging)된 학습 데이터와 의견 어휘 자원을 이용한 지도(Supervised)학습을 이용한 접근이 대부분으로 실제 적용 상의 한계를 갖는다. 본 논문은 문장 내 의견 어구 부분이 태깅된 학습 데이터와 의견 어휘 자원이 없는 환경에서도 문장단위의 극성 정보를 이용하여 의견 어구를 추출하는 부분 지도(Semi-Supervised)학습 장법을 제안한다. 본 논문의 방법은 Baseline에 비하여 정확률(Precision)은 33%, F-Measure는 14% 가량 높은 성능을 냈다.

  • PDF