• Title/Summary/Keyword: Generative Adversarial Networks(GAN)

Search Result 115, Processing Time 0.024 seconds

PathGAN: Local path planning with attentive generative adversarial networks

  • Dooseop Choi;Seung-Jun Han;Kyoung-Wook Min;Jeongdan Choi
    • ETRI Journal
    • /
    • v.44 no.6
    • /
    • pp.1004-1019
    • /
    • 2022
  • For autonomous driving without high-definition maps, we present a model capable of generating multiple plausible paths from egocentric images for autonomous vehicles. Our generative model comprises two neural networks: feature extraction network (FEN) and path generation network (PGN). The FEN extracts meaningful features from an egocentric image, whereas the PGN generates multiple paths from the features, given a driving intention and speed. To ensure that the paths generated are plausible and consistent with the intention, we introduce an attentive discriminator and train it with the PGN under a generative adversarial network framework. Furthermore, we devise an interaction model between the positions in the paths and the intentions hidden in the positions and design a novel PGN architecture that reflects the interaction model for improving the accuracy and diversity of the generated paths. Finally, we introduce ETRIDriving, a dataset for autonomous driving, in which the recorded sensor data are labeled with discrete high-level driving actions, and demonstrate the state-of-the-art performance of the proposed model on ETRIDriving in terms of accuracy and diversity.

FMCW Signal Interpolation Scheme based on GAN for Indoor Location System in Indoor Disaster Situations (실내 재난시 재실자 위치 추적을 위한 GAN 기반의 FMCW 레이더 신호 보간법에 관한 연구)

  • Lee, Jeongpyo;Yang, Sangyi;Kim, Youngok
    • Proceedings of the Korean Society of Disaster Information Conference
    • /
    • 2022.10a
    • /
    • pp.341-342
    • /
    • 2022
  • 본 논문에서는 실내 재난 상황에서 재실자의 위치를 판단하기 위한 Frequency Modulated Continuous Wave(FMCW) 레이더 시스템의 정확도 향상을 위한 Generative Adversarial Networks(GAN) 기반의 신호 보간법을 제안한다. 제안된 실내 위치 추정 시스템은 딥러닝 학습 생성 모델을 활용하게 되는데, 학습을 위한 데이터의 수집이 용이하지 않아 부족하게 되는 학습데이터를 GAN 기법을 통해 확보하고자한다.

  • PDF

Single Image Dehazing Based on Depth Map Estimation via Generative Adversarial Networks (생성적 대립쌍 신경망을 이용한 깊이지도 기반 연무제거)

  • Wang, Yao;Jeong, Woojin;Moon, Young Shik
    • Journal of Internet Computing and Services
    • /
    • v.19 no.5
    • /
    • pp.43-54
    • /
    • 2018
  • Images taken in haze weather are characteristic of low contrast and poor visibility. The process of reconstructing clear-weather image from a hazy image is called dehazing. The main challenge of image dehazing is to estimate the transmission map or depth map for an input hazy image. In this paper, we propose a single image dehazing method by utilizing the Generative Adversarial Network(GAN) for accurate depth map estimation. The proposed GAN model is trained to learn a nonlinear mapping between the input hazy image and corresponding depth map. With the trained model, first the depth map of the input hazy image is estimated and used to compute the transmission map. Then a guided filter is utilized to preserve the important edge information of the hazy image, thus obtaining a refined transmission map. Finally, the haze-free image is recovered via atmospheric scattering model. Although the proposed GAN model is trained on synthetic indoor images, it can be applied to real hazy images. The experimental results demonstrate that the proposed method achieves superior dehazing results against the state-of-the-art algorithms on both the real hazy images and the synthetic hazy images, in terms of quantitative performance and visual performance.

Detecting Malicious Social Robots with Generative Adversarial Networks

  • Wu, Bin;Liu, Le;Dai, Zhengge;Wang, Xiujuan;Zheng, Kangfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.11
    • /
    • pp.5594-5615
    • /
    • 2019
  • Malicious social robots, which are disseminators of malicious information on social networks, seriously affect information security and network environments. The detection of malicious social robots is a hot topic and a significant concern for researchers. A method based on classification has been widely used for social robot detection. However, this method of classification is limited by an unbalanced data set in which legitimate, negative samples outnumber malicious robots (positive samples), which leads to unsatisfactory detection results. This paper proposes the use of generative adversarial networks (GANs) to extend the unbalanced data sets before training classifiers to improve the detection of social robots. Five popular oversampling algorithms were compared in the experiments, and the effects of imbalance degree and the expansion ratio of the original data on oversampling were studied. The experimental results showed that the proposed method achieved better detection performance compared with other algorithms in terms of the F1 measure. The GAN method also performed well when the imbalance degree was smaller than 15%.

GAN System Using Noise for Image Generation (이미지 생성을 위해 노이즈를 이용한 GAN 시스템)

  • Bae, Sangjung;Kim, Mingyu;Jung, Hoekyung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.6
    • /
    • pp.700-705
    • /
    • 2020
  • Generative adversarial networks are methods of generating images by opposing two neural networks. When generating the image, randomly generated noise is rearranged to generate the image. The image generated by this method is not generated well depending on the noise, and it is difficult to generate a proper image when the number of pixels of the image is small In addition, the speed and size of data accumulation in data classification increases, and there are many difficulties in labeling them. In this paper, to solve this problem, we propose a technique to generate noise based on random noise using real data. Since the proposed system generates an image based on the existing image, it is confirmed that it is possible to generate a more natural image, and if it is used for learning, it shows a higher hit rate than the existing method using the hostile neural network respectively.

Deep Learning Based Fake Face Detection (딥 러닝 기반의 가짜 얼굴 검출)

  • Kim, DaeHee;Choi, SeungWan;Kwak, SooYeong
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.5
    • /
    • pp.9-17
    • /
    • 2018
  • Recently, the increasing interest of biometric systems has led to the creation of many researches of biometrics forgery. In order to solve this forgery problem, this paper proposes a method of determining whether a synthesized face made of artificaial intelligence is real face or fake face. The proposed algorithm consists of two steps. Firstly, we create the fake face images using various GAN (Generative Adversarial Networks) algorithms. After that, deep learning algorithm can classify the real face image and the generated face image. The experimental results shows that the proposed algorithm can detect the fake face image which looks like the real face. Also, we obtained the classification accuracy of 88.7%.

Data Augmentation Techniques of Power Facilities for Improve Deep Learning Performance

  • Jang, Seungmin;Son, Seungwoo;Kim, Bongsuck
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.7 no.2
    • /
    • pp.323-328
    • /
    • 2021
  • Diagnostic models are required. Data augmentation is one of the best ways to improve deep learning performance. Traditional augmentation techniques that modify image brightness or spatial information are difficult to achieve great results. To overcome this, a generative adversarial network (GAN) technology that generates virtual data to increase deep learning performance has emerged. GAN can create realistic-looking fake images by competitive learning two networks, a generator that creates fakes and a discriminator that determines whether images are real or fake made by the generator. GAN is being used in computer vision, IT solutions, and medical imaging fields. It is essential to secure additional learning data to advance deep learning-based fault diagnosis solutions in the power industry where facilities are strictly maintained more than other industries. In this paper, we propose a method for generating power facility images using GAN and a strategy for improving performance when only used a small amount of data. Finally, we analyze the performance of the augmented image to see if it could be utilized for the deep learning-based diagnosis system or not.

Evaluation of Sentimental Texts Automatically Generated by a Generative Adversarial Network (생성적 적대 네트워크로 자동 생성한 감성 텍스트의 성능 평가)

  • Park, Cheon-Young;Choi, Yong-Seok;Lee, Kong Joo
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.8 no.6
    • /
    • pp.257-264
    • /
    • 2019
  • Recently, deep neural network based approaches have shown a good performance for various fields of natural language processing. A huge amount of training data is essential for building a deep neural network model. However, collecting a large size of training data is a costly and time-consuming job. A data augmentation is one of the solutions to this problem. The data augmentation of text data is more difficult than that of image data because texts consist of tokens with discrete values. Generative adversarial networks (GANs) are widely used for image generation. In this work, we generate sentimental texts by using one of the GANs, CS-GAN model that has a discriminator as well as a classifier. We evaluate the usefulness of generated sentimental texts according to various measurements. CS-GAN model not only can generate texts with more diversity but also can improve the performance of its classifier.

Combining Conditional Generative Adversarial Network and Regression-based Calibration for Cloud Removal of Optical Imagery (광학 영상의 구름 제거를 위한 조건부 생성적 적대 신경망과 회귀 기반 보정의 결합)

  • Kwak, Geun-Ho;Park, Soyeon;Park, No-Wook
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_1
    • /
    • pp.1357-1369
    • /
    • 2022
  • Cloud removal is an essential image processing step for any task requiring time-series optical images, such as vegetation monitoring and change detection. This paper presents a two-stage cloud removal method that combines conditional generative adversarial networks (cGANs) with regression-based calibration to construct a cloud-free time-series optical image set. In the first stage, the cGANs generate initial prediction results using quantitative relationships between optical and synthetic aperture radar images. In the second stage, the relationships between the predicted results and the actual values in non-cloud areas are first quantified via random forest-based regression modeling and then used to calibrate the cGAN-based prediction results. The potential of the proposed method was evaluated from a cloud removal experiment using Sentinel-2 and COSMO-SkyMed images in the rice field cultivation area of Gimje. The cGAN model could effectively predict the reflectance values in the cloud-contaminated rice fields where severe changes in physical surface conditions happened. Moreover, the regression-based calibration in the second stage could improve the prediction accuracy, compared with a regression-based cloud removal method using a supplementary image that is temporally distant from the target image. These experimental results indicate that the proposed method can be effectively applied to restore cloud-contaminated areas when cloud-free optical images are unavailable for environmental monitoring.

An acoustic Doppler-based silent speech interface technology using generative adversarial networks (생성적 적대 신경망을 이용한 음향 도플러 기반 무 음성 대화기술)

  • Lee, Ki-Seung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.40 no.2
    • /
    • pp.161-168
    • /
    • 2021
  • In this paper, a Silent Speech Interface (SSI) technology was proposed in which Doppler frequency shifts of the reflected signal were used to synthesize the speech signals when 40kHz ultrasonic signal was incident to speaker's mouth region. In SSI, the mapping rules from the features derived from non-speech signals to those from audible speech signals was constructed, the speech signals are synthesized from non-speech signals using the constructed mapping rules. The mapping rules were built by minimizing the overall errors between the estimated and true speech parameters in the conventional SSI methods. In the present study, the mapping rules were constructed so that the distribution of the estimated parameters is similar to that of the true parameters by using Generative Adversarial Networks (GAN). The experimental result using 60 Korean words showed that, both objectively and subjectively, the performance of the proposed method was superior to that of the conventional neural networks-based methods.