• Title/Summary/Keyword: Generative AI Services

Search Result 45, Processing Time 0.021 seconds

An Image-to-Image Translation GAN Model for Dental Prothesis Design (치아 보철물 디자인을 위한 이미지 대 이미지 변환 GAN 모델)

  • Tae-Min Kim;Jae-Gon Kim
    • Journal of Information Technology Services
    • /
    • v.22 no.5
    • /
    • pp.87-98
    • /
    • 2023
  • Traditionally, tooth restoration has been carried out by replicating teeth using plaster-based materials. However, recent technological advances have simplified the production process through the introduction of computer-aided design(CAD) systems. Nevertheless, dental restoration varies among individuals, and the skill level of dental technicians significantly influences the accuracy of the manufacturing process. To address this challenge, this paper proposes an approach to designing personalized tooth restorations using Generative Adversarial Network(GAN), a widely adopted technique in computer vision. The primary objective of this model is to create customized dental prosthesis for each patient by utilizing 3D data of the specific teeth to be treated and their corresponding opposite tooth. To achieve this, the 3D dental data is converted into a depth map format and used as input data for the GAN model. The proposed model leverages the network architecture of Pixel2Style2Pixel, which has demonstrated superior performance compared to existing models for image conversion and dental prosthesis generation. Furthermore, this approach holds promising potential for future advancements in dental and implant production.

Trends and Development Prospects in Broadcasting Technology (방송 기술 동향 및 발전 전망)

  • J.S. Um;B.M. Lim;H.Y. Jung;S.K. Ahn;H.J. Yim;J.H. Seo
    • Electronics and Telecommunications Trends
    • /
    • v.39 no.2
    • /
    • pp.43-53
    • /
    • 2024
  • The media environment is rapidly evolving to be tailored to viewers using personal mobile devices in accordance with technological evolution and changes in social structures. Broadcast media technology is also advancing to enable new services, including data casting, in various reception environments beyond the existing fixed environment and one-way audio/video content services. In addition, technologies to increase the transmission capacity to accommodate next-generation large-capacity media content as well as communication network utilization and convergence technologies are being developed to facilitate interactive services and expand the broadcasting coverage. We discuss the current status and future prospects in broadcasting technology for terrestrial and mobile communication systems and analyze broadcasting technology elements for upcoming media environments relying on generative artificial intelligence.

Generating and Validating Synthetic Training Data for Predicting Bankruptcy of Individual Businesses

  • Hong, Dong-Suk;Baik, Cheol
    • Journal of information and communication convergence engineering
    • /
    • v.19 no.4
    • /
    • pp.228-233
    • /
    • 2021
  • In this study, we analyze the credit information (loan, delinquency information, etc.) of individual business owners to generate voluminous training data to establish a bankruptcy prediction model through a partial synthetic training technique. Furthermore, we evaluate the prediction performance of the newly generated data compared to the actual data. When using conditional tabular generative adversarial networks (CTGAN)-based training data generated by the experimental results (a logistic regression task), the recall is improved by 1.75 times compared to that obtained using the actual data. The probability that both the actual and generated data are sampled over an identical distribution is verified to be much higher than 80%. Providing artificial intelligence training data through data synthesis in the fields of credit rating and default risk prediction of individual businesses, which have not been relatively active in research, promotes further in-depth research efforts focused on utilizing such methods.

Efficient use of artificial intelligence ChatGPT in educational ministry (인공지능 챗GPT의 교육목회에 효율적인 활용방안)

  • Jang Heum Ok
    • Journal of Christian Education in Korea
    • /
    • v.78
    • /
    • pp.57-85
    • /
    • 2024
  • Purpose of the study: In order to utilize artificial intelligence-generated AI in educational ministry, this study analyzes the concept of artificial intelligence and generative AI and the educational theological aspects of educational ministry to find ways to efficiently utilize artificial intelligence ChatGPT in educational ministry. Contents and methods of the study: The contents of this study are. First, the contents of this study were analyzed by dividing the concepts of artificial intelligence and generative AI into the concept of artificial intelligence, types of artificial intelligence, and generative language model AI ChatGPT. Second, the educational theological analysis of educational ministry was divided into the concept of educational ministry, the goals of educational ministry, the content of educational ministry, and the direction of educational ministry in the era of artificial intelligence. Third, the plan to use artificial intelligence ChatGPT in educational ministry is to provide tools for writing sermon manuscripts, preparation tools for worship and prayer, and church education, focusing on the five functions of the early church community. It was analyzed by dividing it into tools for teaching, tools for teaching materials for believers, and tools for serving and volunteering. Conclusion and Recommendation: The conclusion of this study is that, first, when writing sermon manuscripts through artificial intelligence ChatGPT, high-quality sermon manuscripts can be written through the preacher's spirituality, faith, and insight. Second, through artificial intelligence ChatGPT, you can efficiently design and plan worship services and prepare services that serve the congregation objectively through various scenarios. Third, by using artificial intelligence ChatGPT in church education, it can be used while maintaining a complementary relationship with teachers through collaboration with human and artificial intelligence teachers. Fourth, through artificial intelligence ChatGPT, we provide a program that allows members of the church community to share spiritual fellowship, a plan to meet the needs of church members and strengthen interdependence, and an attitude of actively welcoming new people and respecting diversity. It provides useful materials that can play an important role in giving, loving, serving, and growing together in the love of Christ. Lastly, through artificial intelligence ChatGPT, we are seeking ways to provide various information about volunteer activities, learning support for children and youth in the community, mentoring-related programs, and playing a leading role in forming a village community in the local community.

Multi-dimensional Contextual Conditions-driven Mutually Exclusive Learning for Explainable AI in Decision-Making

  • Hyun Jung Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.4
    • /
    • pp.7-21
    • /
    • 2024
  • There are various machine learning techniques such as Reinforcement Learning, Deep Learning, Neural Network Learning, and so on. In recent, Large Language Models (LLMs) are popularly used for Generative AI based on Reinforcement Learning. It makes decisions with the most optimal rewards through the fine tuning process in a particular situation. Unfortunately, LLMs can not provide any explanation for how they reach the goal because the training is based on learning of black-box AI. Reinforcement Learning as black-box AI is based on graph-evolving structure for deriving enhanced solution through adjustment by human feedback or reinforced data. In this research, for mutually exclusive decision-making, Mutually Exclusive Learning (MEL) is proposed to provide explanations of the chosen goals that are achieved by a decision on both ends with specified conditions. In MEL, decision-making process is based on the tree-based structure that can provide processes of pruning branches that are used as explanations of how to achieve the goals. The goal can be reached by trade-off among mutually exclusive alternatives according to the specific contextual conditions. Therefore, the tree-based structure is adopted to provide feasible solutions with the explanations based on the pruning branches. The sequence of pruning processes can be used to provide the explanations of the inferences and ways to reach the goals, as Explainable AI (XAI). The learning process is based on the pruning branches according to the multi-dimensional contextual conditions. To deep-dive the search, they are composed of time window to determine the temporal perspective, depth of phases for lookahead and decision criteria to prune branches. The goal depends on the policy of the pruning branches, which can be dynamically changed by configured situation with the specific multi-dimensional contextual conditions at a particular moment. The explanation is represented by the chosen episode among the decision alternatives according to configured situations. In this research, MEL adopts the tree-based learning model to provide explanation for the goal derived with specific conditions. Therefore, as an example of mutually exclusive problems, employment process is proposed to demonstrate the decision-making process of how to reach the goal and explanation by the pruning branches. Finally, further study is discussed to verify the effectiveness of MEL with experiments.

A Study on the Role of Local Governments in the Era of Generative Artificial Intelligence: Based on Case Studies in Gyeonggi-do Province, Seoul City, and New York City (생성형 인공지능 시대 지방정부의 역할에 대한 연구: 경기도, 서울시, 뉴욕시 사례연구를 바탕으로)

  • S. J. Lee;J. B. Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.10 no.3
    • /
    • pp.809-818
    • /
    • 2024
  • This paper proposes an action plan for local governments to safely utilize artificial intelligence technology in various local government policies. The proposed method analyzes cases of application of artificial intelligence-related laws and policies in Gyeonggi Province, Seoul City, and New York City, and then presents matters that local governments should consider when utilizing AI technology in their policies. This paper applies the AILocalism-Korea analysis methodology, which is a modified version of the AILocalsm analysis methodology[1] presented by TheGovLab at New York University. AILocalism-Korea is an analysis methodology created to analyze the current activities of each local government in the fields of legal system, public procurement, mutual cooperation, and citizen participation, and to suggest practical alternatives in each area. In this paper, we use this analysis methodology to present 9 action plans that local governments should take based on safe and reliable use of artificial intelligence. By utilizing various AI technologies through the proposed plan in local government policies, it will be possible to realize reliable public services.

Research on Generative AI for Korean Multi-Modal Montage App (한국형 멀티모달 몽타주 앱을 위한 생성형 AI 연구)

  • Lim, Jeounghyun;Cha, Kyung-Ae;Koh, Jaepil;Hong, Won-Kee
    • Journal of Service Research and Studies
    • /
    • v.14 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Multi-modal generation is the process of generating results based on a variety of information, such as text, images, and audio. With the rapid development of AI technology, there is a growing number of multi-modal based systems that synthesize different types of data to produce results. In this paper, we present an AI system that uses speech and text recognition to describe a person and generate a montage image. While the existing montage generation technology is based on the appearance of Westerners, the montage generation system developed in this paper learns a model based on Korean facial features. Therefore, it is possible to create more accurate and effective Korean montage images based on multi-modal voice and text specific to Korean. Since the developed montage generation app can be utilized as a draft montage, it can dramatically reduce the manual labor of existing montage production personnel. For this purpose, we utilized persona-based virtual person montage data provided by the AI-Hub of the National Information Society Agency. AI-Hub is an AI integration platform aimed at providing a one-stop service by building artificial intelligence learning data necessary for the development of AI technology and services. The image generation system was implemented using VQGAN, a deep learning model used to generate high-resolution images, and the KoDALLE model, a Korean-based image generation model. It can be confirmed that the learned AI model creates a montage image of a face that is very similar to what was described using voice and text. To verify the practicality of the developed montage generation app, 10 testers used it and more than 70% responded that they were satisfied. The montage generator can be used in various fields, such as criminal detection, to describe and image facial features.

The Effect of ChatGPT Factors & Innovativeness on Switching Intention : Using Theory of Reasoned Action (TRA)

  • Hee-Young CHO;Hoe-Chang YANG;Byoung-Jo HWANG
    • Journal of Distribution Science
    • /
    • v.21 no.8
    • /
    • pp.83-96
    • /
    • 2023
  • Purpose: This study examined the relationship between the factors (Credibility, Usability) and user Innovativeness of the ChatGPT on TRA (Theory of Reasoned Action; Subjective Norm, Attitude) and Switching Intention. TRA and Innovation Diffusion Theory (IDT) were used. Research design, data and methodology: From April 26 to 27, 2023, an online panel survey agency was commissioned to conduct a survey of GhatGPT users in their 20s and 40s in Korea, and a total of 210 people were used for the final analysis. Verification of the research model was performed using SPSS and AMOS. Results: First, ChatGPT factors (Credibility, Usability) were found to have positive effects on TRA (Subjective Norm, Attitude). Second, ChatGPT user Innovativeness was found to have a positive effect on TRA (Subjective Norm, Attitude). Third, ChatGPT users' TRA (Subjective Norm, Attitude) were found to have positive effects on Switching Intention. Conclusions: These results mean that the superior Usability and Credibility of ChatGPT and the Innovativeness of users have a significant effect on the Switching Intention from existing Portal Service (Naver, Google, Daum, etc.) to ChatGPT. Generative AI such as ChatGPT should strive to develop various services such as improving the convenience of functions so that innovative users can use them easily and conveniently in order to provide services that meet expectations.

A Study on the Evaluation Methods for Assessing the Understanding of Korean Culture by Generative AI Models (생성형 AI 모델의 한국문화 이해 능력 평가 방법에 관한 연구)

  • Son Ki Jun;Kim Seung Hyun
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.9
    • /
    • pp.421-428
    • /
    • 2024
  • Recently, services utilizing large-scale language models (LLMs) such as GPT-4 and LLaMA have been released, garnering significant attention. These models can respond fluently to various user queries, but their insufficient training on Korean data raises concerns about the potential to provide inaccurate information regarding Korean culture and language. In this study, we selected eight major publicly available models that have been trained on Korean data and evaluated their understanding of Korean culture using a dataset composed of five domains (Korean language comprehension and cultural aspects). The results showed that the commercial model HyperClovaX exhibited the best performance across all domains. Among the publicly available models, Bookworm demonstrated superior Korean language proficiency. Additionally, the LDCC-SOLAR model excelled in areas related to understanding Korean culture and language.

Analysis of Users' Sentiments and Needs for ChatGPT through Social Media on Reddit (Reddit 소셜미디어를 활용한 ChatGPT에 대한 사용자의 감정 및 요구 분석)

  • Hye-In Na;Byeong-Hee Lee
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.79-92
    • /
    • 2024
  • ChatGPT, as a representative chatbot leveraging generative artificial intelligence technology, is used valuable not only in scientific and technological domains but also across diverse sectors such as society, economy, industry, and culture. This study conducts an explorative analysis of user sentiments and needs for ChatGPT by examining global social media discourse on Reddit. We collected 10,796 comments on Reddit from December 2022 to August 2023 and then employed keyword analysis, sentiment analysis, and need-mining-based topic modeling to derive insights. The analysis reveals several key findings. The most frequently mentioned term in ChatGPT-related comments is "time," indicative of users' emphasis on prompt responses, time efficiency, and enhanced productivity. Users express sentiments of trust and anticipation in ChatGPT, yet simultaneously articulate concerns and frustrations regarding its societal impact, including fears and anger. In addition, the topic modeling analysis identifies 14 topics, shedding light on potential user needs. Notably, users exhibit a keen interest in the educational applications of ChatGPT and its societal implications. Moreover, our investigation uncovers various user-driven topics related to ChatGPT, encompassing language models, jobs, information retrieval, healthcare applications, services, gaming, regulations, energy, and ethical concerns. In conclusion, this analysis provides insights into user perspectives, emphasizing the significance of understanding and addressing user needs. The identified application directions offer valuable guidance for enhancing existing products and services or planning the development of new service platforms.