• Title/Summary/Keyword: Generation rate

Search Result 3,019, Processing Time 0.035 seconds

Facile Fabrication of Bimetallic Catalysts via Selective N atoms of N-Doped Carbon Nanotubes and Their Superior Catalytic Activities for Hydrogen Generation (질소가 포함된 탄소나노튜브의 질소 원자를 이용한 이중 금속 촉매 제조 및 그의 수소 발생 촉매 특성 분석)

  • Shin, Weon Ho;Jeong, Hyung Mo;Choi, Yoon Jeong;Kang, Jeung Ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.111.2-111.2
    • /
    • 2010
  • One-dimensional nanostructures such as carbon nanotubes could be ideal templates for formation of metallic nanoparticles. Furthermore, bimetallic component nanoparticles have recently been interesting issues for having high catalytic activity. This work provides both a facile method to synthesize bimetallic catalysts via N atoms of carbon nanotubes and also a picture about how to design the optimal bimetallic catalyst for hydrogen generation from the hydrogen storage material. In principle, the ratio of one component to another component could be generically extended to fabricate the high-performance bimetallic catalysts on host nanostructures. Indeed, we demonstrate that the bimetallic catalyst composed of the optimum composition results in the excellent hydrogen generation property from an aqueous borane ammonia solution, thus being capable of satisfying the Depart of Energy in USA target required for many advanced applications even with the small amount of our bimetallic catalysts attached onto the N-doped carbon nanotubes. This high hydrogen generation rate is found to be attributed to the optimal distance between active Pt and cheap Ni atoms for effective hydrogen generation.

  • PDF

The study on characteristics of solid-state NaBH4 hydrogen generation and supply system for fuel cell UAV (연료전지 UAV를 위한 고체 상태 NaBH4 수소 발생 및 공급 시스템의 특성 연구)

  • Lee, Chung-Jun;Kim, Tae-Gyu
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.10
    • /
    • pp.901-909
    • /
    • 2012
  • This paper describes characteristics of solid-state $NaBH_4$ hydrogen generation and supply system for fuel cell UAV. Flow rate and pressure of the generated hydrogen were dramatically changed during $NaBH_4$ decomposition using acid. Hydrogen supply was stabilized by a self-pressurized reactor, and hydrogen stabilization method was introduced. For hydrogen generation in below zero-temperature, hydrochloric acid was diluted by propylene glycol-water mixtures. Solid-state $NaBH_4$hydrogen generation and supply system was designed. Basic operation experiments was performed to reveal the characteristics of this hydrogen generation system.

Transition Metal Nanoparticles-Carbon Nitride Nanotube Hybrids: Direct Hydrogen Generation Catalyst of Chemical Hydride Aqueous Solution (전이금속-카본나이트라이드 나노튜브 혼성체: 화학적 수소화물 수용액의 수소발생 촉매)

  • Shin, Weon-ho;Jung, Hyung-mo;Kang, Jeung-ku
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.781-781
    • /
    • 2009
  • We demonstrate that trasition metal catalyst nanoparticle (NP) attached to carbon nitride nanotubes (CNNTs) show selective catalytic activities on hydrogen generation from the water solution including chemical hydride negative ions. The natural bonding orbitals (NBO) obtained from the first-principle calculations shows that the catalysts attached on CNNTs are quite differently polarized when they play for hydrogen generation from chemical hydride ions and hydrogen of water. For Co and Ni nanoparticles attached on CNNTs, their charges are more positively polarized when they interact with $BH_4^-Na^+$ and $H_2O$ while Pt atoms are less positively charged. In this matter, the increased positive charges on catlyst nanoparticles are proven to be more efficient in attracting hydride negative ions, thus improving hydrogen generate rates. Consequently, this result implies that these different charge polarization leads to selective catalytic activities of NPs-CNNTs. In the hydrogen generation experiments, Co-CNNTs shows the highest hydrogen generation rate when the similar amounts of catalyst nanoparticles (Co, Ni, and Pt) are dispersed on the sidewalls of CNNTs.

  • PDF

Efficient key generation leveraging wireless channel reciprocity and discrete cosine transform

  • Zhan, Furui;Yao, Nianmin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.5
    • /
    • pp.2701-2722
    • /
    • 2017
  • Key generation is essential for protecting wireless networks. Based on wireless channel reciprocity, transceivers can generate shared secret keys by measuring their communicating channels. However, due to non-simultaneous measurements, asymmetric noises and other interferences, channel measurements collected by different transceivers are highly correlated but not identical and thus might have some discrepancies. Further, these discrepancies might lead to mismatches of bit sequences after quantization. The referred mismatches significantly affect the efficiency of key generation. In this paper, an efficient key generation scheme leveraging wireless channel reciprocity is proposed. To reduce the bit mismatch rate and enhance the efficiency of key generation, the involved transceivers separately apply discrete cosine transform (DCT) and inverse discrete cosine transform (IDCT) to pre-process their measurements. Then, the outputs of IDCT are quantified and encoded to establish the bit sequence. With the implementations of information reconciliation and privacy amplification, the shared secret key can be generated. Several experiments in real environments are conducted to evaluate the proposed scheme. During each experiment, the shared key is established from the received signal strength (RSS) of heterogeneous devices. The results of experiments demonstrate that the proposed scheme can efficiently generate shared secret keys between transceivers.

Estimation of Annual Capacity of Small Hydro Power Using Agricultural Reservoirs (농업용저수지를 이용한 소수력의 연간발전량 추정)

  • Woo, Jae-Yeoul;Kim, Jin-Soo
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.6
    • /
    • pp.1-7
    • /
    • 2010
  • This study was carried out to investigate the effect of hydro power factors (e.g., irrigation area, watershed area, active storage, gross head) on annual generation capacity and operation ratio for agricultural reservoirs in Chungbuk Province with active storage of over 1 million $m^3$. The annual generation capacity and operation ratio were estimated using HOMWRS (Hydrological Operation Model for Water Resources System) from last 10-year daily hydrological data. The correlation coefficients between annual generation capacity and the hydro power factors except gross head were high (over 0.87), but the correlation coefficients between operational rate and the factors were low (below 0.28). The optimum multiple regression equations of the annual generation capacity were expressed as the functions of watershed area, active storage, and gross head. Also, the simple regression equation of annual generation capacity was expressed as a function of watershed area. The average relative root-mean-square-error (RRMSE) between observed and estimated values by the optimum multiple regression equations was smaller than that by the simple regression equation, suggesting that the former has more accuracy than the latter.

GROUP SECRET KEY GENERATION FOR 5G Networks

  • Allam, Ali M.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.13 no.8
    • /
    • pp.4041-4059
    • /
    • 2019
  • Key establishment method based on channel reciprocity for time division duplex (TDD) system has earned a vital consideration in the majority of recent research. While most of the cellular systems rely on frequency division duplex (FDD) systems, especially the 5G network, which is not characterized by the channel reciprocity feature. This paper realizes the generation of a group secret key for multi-terminals communicated through a wireless network in FDD mode, by utilizing the nature of the physical layer for the wireless links between them. I consider a new group key generation approach, which using bitwise XOR with a modified pairwise secret key generation approach not based on the channel reciprocity feature. Precisely, this multi-node secret key agreement technique designed for three wireless network topologies: 1) the triangle topology, 2) the multi-terminal star topology, and 3) the multi-node chain topology. Three multi-node secret key agreement protocols suggest for these wireless communication topologies in FDD mode, respectively. I determine the upper bound for the generation rate of the secret key shared among multi-node, for the three multi-terminals topologies, and give numerical cases to expose the achievement of my offered technique.

Investigation on Material Flow Diagram for PVC(poly vinyl Chloride) Profile Based Production, Generation, Recycling and Treatment (PVC재질 프로파일의 생산, 발생 및 재활용, 처리에 기반한 물질흐름도 검토)

  • Phae, Chae-Gun;Jung, Oh-Jin
    • Elastomers and Composites
    • /
    • v.47 no.2
    • /
    • pp.129-140
    • /
    • 2012
  • The objective of this study was to estimate the practical recycling rate of plastic products, so that the study was conducted to build material flow diagram for PVC profile. For this objective, product generation, waste generation and recycling status were investigated. Using collected and analyzed status data, analysis of material flow by product and building material flow diagram were conducted. As result of estimating the recycling rate by product, The sum of domestic demand was 525,448 ton and waste generation was 105,853ton in PVC flooring and profile. The sum of generation of recycling product and raw material was investigated to be 76,004ton(14.46%), which is higher compared to recycling obligation(8.5%) in 2009. To build the material flow diagram in the years(5~20years) ahead, prediction of future demand was based on the assumption that there will be no difference in annual generation of current and future. As the recycling rate of flooring and profile increases, it is estimated to reach 20% in 2013 according to the material flow diagram.

Feasibility Study on the Construction of Small Hydro-Power Plants in Gumi Sewage Treatment Plant Discharge Point (구미하수처리장 방류구에서의 소수력발전 설치 및 운영에 관한 연구)

  • Nah, Dong-Hun;Lee, Seung-Hwan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.24 no.2
    • /
    • pp.173-181
    • /
    • 2010
  • This study was conducted to investigate the possible installation of small hydro-power plant at the discharge point of Gumi sewage treatment plant (STP) using treated wastewater. Sufficient amount of water to transfer to electric power and the selection of proper location are two essential elements for the construction of small hydro-power facility. Preliminary analysis based on site visit and existing data in Gumi STP were made. Capacity of the small hydro-power plants and exact location were determined by geomorphological condition and flow duration characteristics. Flow duration characteristics and its duration curve were identified using monthly rainfall data in Gumi STP. Relevant facts of small hydro-power system in other STP were referred to adopt to Gumi STP situation. Flowrate of treated effluents and effective head between flow chamber and the location of hydraulic turbine in Gumi STP are found to be $3.70m^3$/sec and 3.5m respectively. Electric generation rate based on this feasibility study was estimated to be 86.3kW/h. Yearly electric generation rate was expected to be 932.4MMh. Proposed small hydro-power plant construction in Gumi STP is to be reasonable.

Outcomes with Single Agent LIPO-DOX in Platinum-Resistant Ovarian and Fallopian Tube Cancers and Primary Peritoneal Adenocarcinoma - Chiang Mai University Hospital Experience

  • Suprasert, Prapaporn;Manopunya, Manatsawee;Cheewakriangkrai, Chalong
    • Asian Pacific Journal of Cancer Prevention
    • /
    • v.15 no.3
    • /
    • pp.1145-1148
    • /
    • 2014
  • Background: Single pegylated liposomal doxorubicin (PLD) is commonly used as a salvage treatment in platinum-resistant ovarian cancer, fallopian tube cancer and primary peritoneal adenocarcinoma (PPA) with a satisfactory outcome. However, the data for second generation PLD administered in this setting are still limited. We conducted a retrospective study to evaluate the outcome of patients who received single-agent second generation PLD (LIPO-DOX) after the development of clinical platinum resistance. The study period was between March 2008 and March 2013. LIPO-DOX was administered intravenously 40 $mg/m^2$ every 28 days until disease progression, but for not more than six cycles. The response rate was evaluated using the Gynecologic Cancer Intergroup (GCIG) criteria while the toxicity was evaluated according to WHO criteria. Twenty-nine patients met the inclusion criteria in the study period with an overall response rate of 13.8%. The median progression free survival and overall survival were three and eleven months, respectively. With the total of 96 cycles of chemotherapy, the patients developed grades 3 and 4 hematologic toxicity as follows: anemia, 0%, leukopenia, 9.6%, neutropenia, 32.3% and thrombocytopenia, 0%. In conclusion, the single agent second generation PLD demonstrated modest efficacy in patients with platinum-resistant ovarian cancer, fallopian tube cancer and PPA without serious toxicity.

Temperature Measurement when High-speed Machining using Infra-red Thermal Imaging Camera (적외선 열화상 카메라를 이용한 고속가공에서의 열 발생 특성)

  • 김흥배;이우영;최성주;유중학
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2001.04a
    • /
    • pp.422-428
    • /
    • 2001
  • The term High Speed Machining has been used for many years to describe end milling with small diameter tools at high rotational speeds, typically 10,000 - 100,000 rpm. The process was applied in the aerospace industry for the machining of light alloys, notably aluminium. In recent year, however, the mold and die industry has begun to use the technology for the production of components, including those manufactured from hardened tool steels. With increasing cutting speed used in modern machining operation, the thermal aspects of cutting become more and more important. It not only directly influences in rate of tool wear, but also will affect machining precision recognized as thermal expansion and the roughness of the surface finish. Hence, one needs to accurately evaluate the rate of cutting heat generation and temperature distributions on the machining surface. To overcome the heat generation, we used to cutting fluid. Cutting fluid play a roles in metal cutting process. Mechanically coupled effectiveness of cutting fluids affect to friction coefficient at tool-work-piece interface and cutting temperature and chip control, surface finish, tool wear and form accuracy. Through this study, we examined the behavior of heat generation in high-speed machining and the cooling performance of various cooling methods.

  • PDF