• Title/Summary/Keyword: Generation of Mechanisms

Search Result 579, Processing Time 0.023 seconds

Trend of Multigenerational Transfer and Toxicity Studies Using Nanomaterials (나노물질을 이용한 다세대전이 및 독성 연구 추세)

  • Moon, Jongmin;An, Youn-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.7
    • /
    • pp.395-401
    • /
    • 2016
  • Nano-saftey has become an emerging issue recently, because of the broad use of nanomaterials in nano-industries and commercial areas. For a sustainable development in the nano-industry, active studies on nano-safety should be executed, especially on the potential risks in engineered nanomaterials (ENMs). Although acute and chronic assessments of nanomaterials have been extensively studied in many studies, multigenerational studies are very scarce. Overall, multigenerational studies have progressed as two different trends, studying post-generational effects or trans-generation effects. This study intended to suggest further nano-safety studies based on the trends and limitations of current ones. Through a comparative analysis, we investigated peer-reviewed multigenerational studies that used nanomaterials. Thirteen studies on post-generation effects confirmed generational nano-toxicity via several bioassays, such as mortality, fertility, and behavioral assays. Seven studies on trans-generation effects demonstrated nanomaterial pathways to next generations, using imaging techniques. Until now, mechanisms for post-generational nano-toxicity has been rarely proposed. Thus, we propose that complementary studies on such mechanisms are imperative for future studies.

Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways

  • Hwang, Yu-Jin;Lee, Eun-Ju;Kim, Haeng-Ran;Hwang, Kyung-A
    • BMB Reports
    • /
    • v.46 no.12
    • /
    • pp.611-616
    • /
    • 2013
  • Luteolin-7-O-glucoside (LUT7G), a flavone subclass of flavonoids, has been found to increase anti-oxidant and anti-inflammatory activity, as well as cytotoxic effects. However, the mechanism of how LUT7G induces apoptosis and regulates cell cycles remains poorly understood. In this study, we examined the effects of LUT7G on the growth inhibition of tumors, cell cycle arrest, induction of ROS generation, and the involved signaling pathway in human hepatocarcinoma HepG2 cells. The proliferation of HepG2 cells was decreased by LUT7G in a dose-dependent manner. The growth inhibition was due primarily to the G2/M phase arrest and ROS generation. Moreover, the phosphorylation of JNK was increased by LUT7G. These results suggest that the anti-proliferative effect of LUT7G on HepG2 is associated with G2/M phase cell cycle arrest by JNK activation.

Securing the Information using Improved Modular Encryption Standard in Cloud Computing Environment

  • A. Syed Ismail;D. Pradeep;J. Ashok
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.10
    • /
    • pp.2822-2843
    • /
    • 2023
  • All aspects of human life have become increasingly dependent on data in the last few decades. The development of several applications causes an enormous issue on data volume in current years. This information must be safeguarded and kept in safe locations. Massive volumes of data have been safely stored with cloud computing. This technology is developing rapidly because of its immense potentials. As a result, protecting data and the procedures to be handled from attackers has become a top priority in order to maintain its integrity, confidentiality, protection, and privacy. Therefore, it is important to implement the appropriate security measures in order to prevent security breaches and vulnerabilities. An improved version of Modular Encryption Standard (IMES) based on layered modelling of safety mechanisms is the major focus of this paper's research work. Key generation in IMES is done using a logistic map, which estimates the values of the input data. The performance analysis demonstrates that proposed work performs better than commonly used algorithms against cloud security in terms of higher performance and additional qualitative security features. The results prove that the proposed IMES has 0.015s of processing time, where existing models have 0.017s to 0.022s of processing time for a file size of 256KB.

The Influence of Brand Personality and SNS Characteristics of Fashion Designer Brands on Brand Preference and Behavioral Intention: Focusing on the Moderating Effect of Consumer Type (패션 디자이너 브랜드의 개성과 SNS 특성이 브랜드 선호도 및 행동의도에 미치는 영향: 소비자 유형에 따른 조절효과를 중심으로)

  • Ji Yeongran;Sung-Byung Yang;Sang-Hyeak Yoon
    • Journal of Information Technology Services
    • /
    • v.22 no.3
    • /
    • pp.119-139
    • /
    • 2023
  • Generation MZ has emerged as a significant consumer segment and trendsetter in the fashion market of South Korea. Fashion designer brands have become popular among this generation by offering a range of fashion content on social network services (SNS) based on fresh and trendy designs. Despite the growing market share of fashion designer brands in the industry, previous research has mainly focused on brand personality in line with the characteristics of traditional fashion brands. Therefore, this study aims to derive brand personality and SNS characteristics of fashion designer brands based on previous research and investigate the influence of these factors on brand preference and behavioral intention. Moreover, it examines how this influencing mechanism fluctuates based on the consumer type (i.e., innovative type vs. price-sensitive type). Based on an online survey of 256 Korean adults with experience in fashion designer brands, this study identified the influencing mechanisms on purchase intention and word-of-mouth intention. This study contributes to empirical investigations of consumer brand preference and behavior intention in fashion designer brands through the brand equity model. It also offers insight into developing a segmented brand strategy by considering the variations in the influence mechanism of behavioral intention across different consumer types.

Mesoscale modelling of concrete for static and dynamic response analysis -Part 1: model development and implementation

  • Tu, Zhenguo;Lu, Yong
    • Structural Engineering and Mechanics
    • /
    • v.37 no.2
    • /
    • pp.197-213
    • /
    • 2011
  • Concrete is a heterogeneous material exhibiting quasi-brittle behaviour. While homogenization of concrete is commonly accepted in general engineering applications, a detailed description of the material heterogeneity using a mesoscale model becomes desirable and even necessary for problems where drastic spatial and time variation of the stress and strain is involved, for example in the analysis of local damages under impact, shock or blast load. A mesoscale model can also assist in an investigation into the underlying mechanisms affecting the bulk material behaviour under various stress conditions. Extending from existing mesoscale model studies, where use is often made of specialized codes with limited capability in the material description and numerical solutions, this paper presents a mesoscale computational model developed under a general-purpose finite element environment. The aim is to facilitate the utilization of sophisticated material descriptions (e.g., pressure and rate dependency) and advanced numerical solvers to suit a broad range of applications, including high impulsive dynamic analysis. The whole procedure encompasses a module for the generation of concrete mesoscale structure; a process for the generation of the FE mesh, considering two alternative schemes for the interface transition zone (ITZ); and the nonlinear analysis of the mesoscale FE model with an explicit time integration approach. The development of the model and various associated computational considerations are discussed in this paper (Part 1). Further numerical studies using the mesoscale model for both quasi-static and dynamic loadings will be presented in the companion paper (Part 2).

An Experimental Study on the Squeal Noise Generation due to Dynamic Instability of Brake Pad (브레이크 패드의 동적 불안정성에 따른 스퀼 소음 발생 원인의 실험적 연구)

  • Cho, Sangwoon;Lim, Byoungduk
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.5
    • /
    • pp.520-526
    • /
    • 2016
  • Squeal noise is a typical brake noise that is annoying to both passengers and pedestrians. Its frequency range is fairly wide from 1 kHz to 18 kHz, which can be distressful to people. The brake squeal noise occurs due to various mechanisms, such as the mode coupling of the brake system, self-excited vibration, unstable wear, and others. In this study, several parameters involved in the generation of a squeal noise are investigated experimentally by using a brake noise dynamometer. The speed, caliper pressure, torque, and friction coefficient are measured as functions of time on the dynamometer. The contact pressure and temperature distributions of the disc and the pad are also measured by using a thermal imaging camera and a pressure mapping system. As a result of the simultaneous measurement of the friction coefficient and squeal amplitude as functions of the velocity, it is found that the onset of the squeal may be predicted from the ${\mu}-v$ curve. It is also found that a non-uniform contact pressure causes instability and, in turn, a squeal. Based on the analysis results, design modifications of the pad are suggested for improved noise characteristics.

Stretch Reflex Induced Resting Tremor(SRIRT) (신전반사에 의해 유발된 휴지기성 진전 1예)

  • Kim, Ji-Sung;Seo, Man-Wook;Shin, Byoung-Soo;Kim, Young-Hyun
    • Annals of Clinical Neurophysiology
    • /
    • v.3 no.2
    • /
    • pp.168-171
    • /
    • 2001
  • It has been said that variable anatomical structures and neural circuits are related to the generation of tremor. There are cerebral cortex, thalamus, basal ganglia, inferior olivary nucleus, midbrain tegmentum, stretch reflex, and musculoskeletal structures. The stretch reflex is related with the physiologic tremor and various peripherally originated tremors. We experienced a case with the post-stroke resting tremor which was induced and aggravated by mechanical stretching stimulation. In the present case, stretch reflex has a major role in the generation and exacerbation of tremor. It is presumed that the development of tremor is attributed to the increased rhythmicity of ventral intermedius nucleus of thalamus. The enhancement of thalamic rhythmicity may be due to the increasement of long latency reflex by post-stroke rigidity. This case suggests that stretch reflex may have a major role in the pathophysiologic mechanisms of a certain centrally originated tremor.

  • PDF

A Study on NOx Formation Pathway of Methane-Air Lean Premixed Combustion by using PSR Model (PSR 모델을 이용한 메탄-공기 희박 예혼합 연소의 NOx 생성 경로 연구)

  • Lee, Bo-Rahm;Kim, Hyun;Park, Jung-Kyu;Lee, Min-Chul;Park, Won-Shik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.5
    • /
    • pp.46-52
    • /
    • 2009
  • In this study the predictions of NOx in methane-air lean premixed combustion in PSR were carried out with GRI 3.0 methane-air combustion mechanism and Zeldovich, nitrous oxide, prompt, and NNH NO formation mechanism by using CHEMKIN code. The results are compared to the JSR experimental data of Rutar for the validation of the model. This study concerns about the importance of the chemical pathways. The chemical pathway most likely to form the NO in methane-air lean-premixed combustion was investigated. The results obtained with the 4 different NO mechanisms for residence time(0.5-1.6ms) and pressure(3, 4.7, 6.5 atm) are compared and discussed.

Characteristics of Tar Generation during the interval of Gasification of Woodchip (탈휘발 과정과 촤가스화 과정에서 목질계 바이오매스의 타르발생 특성)

  • Moon, Ji-Hong;Lee, Uen-Do;Ryu, Chang-Kook;Lee, Youn-Man;Bae, Woo-Keun
    • Journal of the Korean Society of Combustion
    • /
    • v.16 no.1
    • /
    • pp.8-14
    • /
    • 2011
  • Biomass gasification is a promising technology in terms of clean energy and flexible options for end use such as heat, steam, electricity, gaseous or liquid fuels. In a gasification process, reduction of tar is very important because it can cause any mechanical problems and small tar implies high energy efficiency. However, generation and conversion mechanisms of tar have not been fully understood due to its complex nature. In this study, characteristics of tar generated from different gasification stages were investigated. Korean pine woodchip was used as feedstock and tar was sampled in a separate way during devolatilization and char gasification stage, investigated. As a result. more various kinds of hydro carbon compounds were identified in the devolatilization stage than char gasification stage because primary tar compounds are released mostly from pyrolysis of cellulose and hemicellulose. When the reaction temperature increased up to $900^{\circ}C$, tar composition becomes simplified into about 10 aromatic compounds mostly with 1-4 rings without substitution up to phenanthrene. The sampled tar in the char gasification stage mostly contains 5-7 simple aromatic compounds.

An Anti-inflammatory Peptide Isolated from Seahorse Hippocampus kuda bleeler Inhibits the Invasive Potential of MG-63 Osteosarcoma Cells

  • Yang, Yun-Ji;Kim, Se-Kwon;Park, Sun-Joo
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.1
    • /
    • pp.29-36
    • /
    • 2012
  • Osteosarcoma is the most common primary malignancy of bone, and patients often develop pulmonary metastasis. The mechanisms underlying osteosarcoma metastasis remain to be elucidated. Recently, anti-inflammatory agents were shown to be useful in the treatment of tumor progression. We previously isolated a natural anti-inflammatory peptide from the seahorse Hippocampus kuda bleeler. Here, we examined the antitumor metastatic activity of this peptide and investigated its mechanism. The peptide significantly inhibited 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced invasive migration of human osteosarcoma MG-63 cells. Its inhibitory effect on invasive migration was associated with reduced expression of matrix metalloproteinases (MMP1 and MMP2). In addition, TPA stimulation increased intracellular reactive oxygen species (ROS) generation and small GTPase Rac1 expression, whereas the peptide decreased ROS generation and Rac1 activation. Taken together, these results suggest that the peptide inhibits invasive migration of MG-63 osteosarcoma cells by inhibiting MMP1 and MMP2 expression through downregulation of Rac1-ROS signaling.