• Title/Summary/Keyword: Generation energy resource

Search Result 279, Processing Time 0.03 seconds

Analysis of Small Hydropower Resources for Han River System Using Resource Management System (자원관리시스템을 이용한 한강수계의 소수력자원 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.04a
    • /
    • pp.241-245
    • /
    • 2011
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower resource management system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of Han river system by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower resource management system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Small hydropower resource management system can be used gather basic information for positive applications of small hydropower energy nationwide.

  • PDF

Analysis of Small Hydropower Resources for Nakdong River System Using Resource Management System (자원관리시스템을 이용한 낙동강수계의 소수력자원 분석)

  • Park, Wan-Soon;Lee, Chul-Hyung
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.354-358
    • /
    • 2011
  • Small hydropower is one of the many types of new and renewable energy, which South Korea is planning to develop, as the country is abundant in endowed resources. In order to fully utilize small hydropower resources, there is a need for greater precision in quantifying small hydropower resources and establish an environment in which energy sources can be discovered using the small hydropower resource management system. This study has given greater precision to calculating annual electricity generation and installed capacity of small hydropower plants of Nakdong river system by inquiring into average annual rainfall, basin area and runoff coefficient, which is anticipated to promote small hydropower resources utilization. Small hydropower resource management system was also established by additionally providing base information on quantified small hydropower resources and analysis function and small hydropower generator status, rivers, basin, rainfall gauging station, water level gauging station etc.. Small hydropower resource management system can be used gather basic information for positive applications of small hydropower energy nationwide.

  • PDF

Estimation of Optimal Angle for PV Panels Considering Building's Shadow in Daejeon (대전지역 건물음영을 고려한 PV 최적각도 산정)

  • Lee, Jung-Tae;Kim, Hyun-Goo;Kang, Yong-Heack;Yun, Chang-Yeol;Kim, Chang Ki;Kim, Jin-Young;Kim, Bo-Young
    • Journal of the Korean Solar Energy Society
    • /
    • v.40 no.3
    • /
    • pp.43-52
    • /
    • 2020
  • By blocking irradiance, shadows cast by high-rise buildings in urban areas can reduce the power generation efficiency of PV panels installed on low-rise buildings. As the conventionally installed PV panel is not suitable for the urban environment, which is unfavorable for power generating, a more radical solution is required. This study aims to help solve this problem by estimating the optimal PV panel angle. Using the proposed method, the optimal PV angle was calculated by considering shadows that could be cast by nearby buildings throughout the year, and the correlation between solar shading and elevation angle was discovered based on the calculated data.

Chance-constrained Scheduling of Variable Generation and Energy Storage in a Multi-Timescale Framework

  • Tan, Wen-Shan;Abdullah, Md Pauzi;Shaaban, Mohamed
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1709-1718
    • /
    • 2017
  • This paper presents a hybrid stochastic deterministic multi-timescale scheduling (SDMS) approach for generation scheduling of a power grid. SDMS considers flexible resource options including conventional generation flexibility in a chance-constrained day-ahead scheduling optimization (DASO). The prime objective of the DASO is the minimization of the daily production cost in power systems with high penetration scenarios of variable generation. Furthermore, energy storage is scheduled in an hourly-ahead deterministic real-time scheduling optimization (RTSO). DASO simulation results are used as the base starting-point values in the hour-ahead online rolling RTSO with a 15-minute time interval. RTSO considers energy storage as another source of grid flexibility, to balance out the deviation between predicted and actual net load demand values. Numerical simulations, on the IEEE RTS test system with high wind penetration levels, indicate the effectiveness of the proposed SDMS framework for managing the grid flexibility to meet the net load demand, in both day-ahead and real-time timescales. Results also highlight the adequacy of the framework to adjust the scheduling, in real-time, to cope with large prediction errors of wind forecasting.

Incorporating Resource Dynamics to Determine Generation Adequacy Levels in Restructured Bulk Power Systems

  • Felder, Frank A.
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.100-105
    • /
    • 2004
  • Installed capacity markets in the northeast of the United States ensure that adequate generation exists to satisfy regional loss of load probability (LOLP) criterion. LOLP studies are conducted to determine the amount of capacity that is needed, but they do not consider several factors that substantially affect the calculated distribution of available capacity. These studies do not account for the fact that generation availability increases during periods of high demand and therefore prices, common-cause failures that result in multiple generation units being unavailable at the same time, and the negative correlation between load and available capacity due to temperature and humidity. A categorization of incidents in an existing bulk power reliability database is proposed to analyze the existence and frequency of independent failures and those associated with resource dynamics. Findings are augmented with other empirical findings. Monte Carlo methods are proposed to model these resource dynamics. Using the IEEE Reliability Test System as a single-bus case study, the LOLP results change substantially when these factors are considered. Better data collection is necessary to support the more comprehensive modeling of resource adequacy that is proposed. In addition, a parallel processing method is used to offset the increase in computational times required to model these dynamics.

Voltage and Transient State Analysis of Distribution Line connected to Wind Power Generation (풍력발전이 연계된 배전선로 전압 및 과도상태 해석)

  • Kim, Se-Ho;Na, Kyoung-Yoon;Kim, Gun-Hoon
    • Journal of the Korean Solar Energy Society
    • /
    • v.26 no.2
    • /
    • pp.61-67
    • /
    • 2006
  • The use of the wind energy resource is a rapidly growing area world-wide. The number of installed units is continuously increasing, and therefore, it is important to respect and to deal with the impact of wind power generation system. From the view of an electric grid utility, there is a major problem with the impact of the wind system on the voltage of the electric grid, to which a turbine is connected. In this paper, it is investigated the voltage impact and transient state analysis on distribution line, with which wind power generation system is connected. Connections of wind power system usually occur to voltage drop due to reactive power absorption and sometime result in higher than nominal voltage.

A Case Study of Decreasing Environment Pollution Caused by Energy Consumption of a Dormitory Building Which Only Using Electricity by Efficiently Simulating Applying Residential SOFC (Solid Oxide Fuel Cell)

  • Chang, Han;Lee, In-Hee
    • Architectural research
    • /
    • v.21 no.1
    • /
    • pp.21-29
    • /
    • 2019
  • Recent years in Korea, some new developed buildings are only using electricity as power for heating, cooling, bathing and even cooking which means except electricity, there is no natural gas or other kinds of energy used in such kind of building. In vehicle industry area, scientists already invented electric vehicle as an environment friendly vehicle; after that, in architecture design and construction field, buildings only using electricity appeared; the curiosity of the environment impact of energy consumption by such kind of building lead me to do this research. In general, electricity is known as a clean energy resource reasoned by it is noncombustible energy resource; however, although there is no environmental pollution by using electricity, electricity generation procedure in power plant may cause huge amount of environment pollution; especially, electricity generation from combusting coal in power plant could emit enormous air pollutants to the air. In this research, the yearly amount of air pollution by energy using under traditional way in research target building that is using natural gas for heating, bathing and cooking and electricity for lighting, equipment and cooling is compared with yearly amount of air pollution by only using electricity as power in the building; result shows that building that only uses electricity emits much more air pollutants than uses electricity and natural gas together in the building. According to the amount of air pollutants comparison result between two different energy application types in the building, residential SOFC (Solid oxide fuel cell) is simulated to apply in this building for decreasing environment pollution of the building; furthermore, high load factor could lead high efficiency of SOFC, in the scenario of simulating applying SOFC in the building, SOFC is shared by two or three households in spring and autumn to increase efficiency of the SOFC. In sum, this research is trying to demonstrate electricity is a conditioned environment friendly energy resource; in the meanwhile, SOFC is simulated efficiently applying in the building only using electricity as power to decrease the large amount of air pollutants by energy using in the building. Energy consumption of the building is analyzed by calibrated commercial software Design Builder; the calibrated mathematical model of SOFC is referred from other researcher's study.

A study on Design of Generation Capacity for Offshore Wind Power Plant : The Case of Chonnam Province in Korea (해상풍력 발전용량 설계에 관한 연구 : 전남사례를 중심으로)

  • Jeong, Moon-Seon;Moon, Chae-Joo;Chang, Young-Hak;Lee, Soo-Hyoung;Lee, Sook-Hee
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.3
    • /
    • pp.547-554
    • /
    • 2018
  • Wind energy is widely recognized as one of the cheapest forms of clean and renewable energy. In fact, in several countries, wind energy has achieved cost parity with fossil fuel-based sources of electricity generation for new electricity generation plants. Offshore wind energy development promises to be a significant domestic renewable energy source for the target of korea government 3020 plan. A pivotal activity during the development phase of a wind project is wind resource assessment. Several approaches can be categorized as three basic scales or stages of wind resource assessment: preliminary area identification, area wind resource evaluation, and micrositing. This study is to estimate the wind power capacity of chonnam province offshore area using three basic stages based on the six meteorological mast data. WindPRO was used, one of a well-known wind energy prediction programs and based on more than 25 years of experiences in development of software tools for wind energy project development. The design results of offshore wind power generation capacity is calculated as total 2.52GW with six wind farms in chonnam offshore area.

An Analysis of the Economic Effects of the New and Renewable Energy Transformation of Thermal Power Generation (화력발전의 신재생에너지 전환에 따른 경제적 파급효과 분석)

  • Sangsoo Lim
    • Environmental and Resource Economics Review
    • /
    • v.32 no.2
    • /
    • pp.127-147
    • /
    • 2023
  • This study is trying to analyze the economic effect of replacing thermal power generation, one of the government's carbon-neutral policies, with new and renewable energy. For this analysis, scenario A is set to replace 100% of thermal power generation with new and renewable energy, and scenario B is set to replace 60% of thermal power generation with new and renewable energy. In addition, costs are incurred when replacing thermal power generation with new and renewable energy, and scenario 1 is the same cost as the current cost, and scenario 2 is120% higher than the current cost. Therefore, when converting thermal power generation to new and renewable energy, the scenarios are largely organized into four cases. In the case of replacing thermal power generation with new and renewable energy, the production inducement coefficient of thermal power generation decreased from the current level regardless of the scenario. However, the value-added inducement coefficient and the greenhouse gas emission inducement coefficient are lower than the current level when thermal power is converted to renewable energy by 100%, while the value-added inducement coefficient and greenhouse gas emission inducement coefficient are higher than the current level. In addition, the greenhouse gas emission induction coefficient of most industries was found to decrease, while the production induction coefficient and the value-added induction coefficient increased. Scenario A seems appropriate because the purpose of the government's policy is to reduce greenhouse gas emissions by converting thermal power into new and renewable energy. However, as a result of this, the production inducement coefficient and value-added inducement coefficient of some industries decrease, so the government's support policy is needed to solve this problem