• Title/Summary/Keyword: Generate Data

Search Result 3,066, Processing Time 0.031 seconds

Detection of the Change in Blogger Sentiment using Multivariate Control Charts (다변량 관리도를 활용한 블로거 정서 변화 탐지)

  • Moon, Jeounghoon;Lee, Sungim
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.6
    • /
    • pp.903-913
    • /
    • 2013
  • Social network services generate a considerable amount of social data every day on personal feelings or thoughts. This social data provides changing patterns of information production and consumption but are also a tool that reflects social phenomenon. We analyze negative emotional words from daily blogs to detect the change in blooger sentiment using multivariate control charts. We used the all the blogs produced between 1 January 2008 and 31 December 2009. Hotelling's T-square control chart control chart is commonly used to monitor multivariate quality characteristics; however, it assumes that quality characteristics follow multivariate normal distribution. The performance of a multivariate control chart is affected by this assumption; consequently, we introduce the support vector data description and its extension (K-control chart) suggested by Sun and Tsung (2003) and they are applied to detect the chage in blogger sentiment.

ECG simulator design with Spartan-3 FPGA (Spartan-3 FPGA를 이용한 ECG 시뮬레이터 설계)

  • Woo, Sung-hee;Lee, Won-pyo;Ryu, Geun-teak
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2015.10a
    • /
    • pp.834-837
    • /
    • 2015
  • In this paper, we designed the FPGA hardware-based real-time ECG simulator, which generates an analog ECG signal within the range of 0 to 5 volts and described function. The ECG signal generated by the simulator can be applied to laboratory tests, the medical device, and the calibration study in various ways. ECG signals generated by simulator are obtained with conventional 24bit quantization to generate the signal data, and they are sampled and quantized to 1kHz of the 8-bit resolution when used as actual data. The proposed simulator is implemented using xilix Spartan-3 and data are transmitted through an RS-232 between the PC and the FPGA simulator. The transmitted data are stored in the memory and the stored data are printed out with the analog ECG signal through DAC (0808). It can also control the heart rate (HR) via the two buttons level UP-DOWN. We used existing ECG input rating for the evaluation of the designed system and evaluated differential circuit for obtaining QRS waveform and the output signal. We finally could obtained proper the result.

  • PDF

Offline Based Ransomware Detection and Analysis Method using Dynamic API Calls Flow Graph (다이나믹 API 호출 흐름 그래프를 이용한 오프라인 기반 랜섬웨어 탐지 및 분석 기술 개발)

  • Kang, Ho-Seok;Kim, Sung-Ryul
    • Journal of Digital Contents Society
    • /
    • v.19 no.2
    • /
    • pp.363-370
    • /
    • 2018
  • Ransomware detection has become a hot topic in computer security for protecting digital contents. Unfortunately, current signature-based and static detection models are often easily evadable by compress, and encryption. For overcoming the lack of these detection approach, we have proposed the dynamic ransomware detection system using data mining techniques such as RF, SVM, SL and NB algorithms. We monitor the actual behaviors of software to generate API calls flow graphs. Thereafter, data normalization and feature selection were applied to select informative features. We improved this analysis process. Finally, the data mining algorithms were used for building the detection model for judging whether the software is benign software or ransomware. We conduct our experiment using more suitable real ransomware samples. and it's results show that our proposed system can be more effective to improve the performance for ransomware detection.

Parameter estimation for the imbalanced credit scoring data using AUC maximization (AUC 최적화를 이용한 낮은 부도율 자료의 모수추정)

  • Hong, C.S.;Won, C.H.
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.2
    • /
    • pp.309-319
    • /
    • 2016
  • For binary classification models, we consider a risk score that is a function of linear scores and estimate the coefficients of the linear scores. There are two estimation methods: one is to obtain MLEs using logistic models and the other is to estimate by maximizing AUC. AUC approach estimates are better than MLEs when using logistic models under a general situation which does not support logistic assumptions. This paper considers imbalanced data that contains a smaller number of observations in the default class than those in the non-default for credit assessment models; consequently, the AUC approach is applied to imbalanced data. Various logit link functions are used as a link function to generate imbalanced data. It is found that predicted coefficients obtained by the AUC approach are equivalent to (or better) than those from logistic models for low default probability - imbalanced data.

Future drought assessment in the Nakdong basin in Korea under climate change impacts

  • Kim, Gwang-Seob;Quan, Ngo Van
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.458-458
    • /
    • 2012
  • Climate extreme variability is a major cause of disaster such as flood and drought types occurred in Korea and its effects is also more severe damage in last decades which can be danger mature events in the future. The main aim of this study was to assess the effectives of climate change on drought for an agriculture as Nakdong basin in Korea using climate change data in the future from data of General Circulation Models (GCM) of ECHO-G, with the developing countries like Korea, the developed climate scenario of medium-high greenhouse gas emission was proposed of the SRES A2. The Standardized Precipitation Index (SPI) was applied for drought evaluation. The drought index (SPI) applied for sites in catchment and it is evaluated accordingly by current and future precipitation data, specific as determined for data from nine precipitation stations with data covering the period 1980-2009 for current and three periods 2010-2039, 2040-2069 and 2070-2099 for future; time scales of 3month were used for evaluating. The results determined drought duration, magnitude and spatial extent. The drought in catchment act intensively occurred in March, April, May and November and months of drought extreme often appeared annual in May and November; drought frequent is a non-uniform cyclic pattern in an irregular repetitive manner, but results showed drought intensity increasing in future periods. The results indicated also spatial point of view, the SPI analysis showed two of drought extents; local drought acting on one or more one of sites and entire drought as cover all of site in catchment. In addition, the meteorology drought simulation maps of spatial drought representation were carried out with GIS software to generate for some drought extreme years in study area. The method applied in this study are expected to be appropriately applicable to the evaluation of the effects of extreme hydrologic events, the results also provide useful for the drought warning and sustainable water resources management strategies and policy in agriculture basins.

  • PDF

Traffic Data Generation Technique for Improving Network Attack Detection Using Deep Learning (네트워크 공격 탐지 성능향상을 위한 딥러닝을 이용한 트래픽 데이터 생성 연구)

  • Lee, Wooho;Hahm, Jaegyoon;Jung, Hyun Mi;Jeong, Kimoon
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.11
    • /
    • pp.1-7
    • /
    • 2019
  • Recently, various approaches to detect network attacks using machine learning have been studied and are being applied to detect new attacks and to increase precision. However, the machine learning method is dependent on feature extraction and takes a long time and complexity. It also has limitation of performace due to learning data imbalance. In this study, we propose a method to solve the degradation of classification performance due to imbalance of learning data among the limit points of detection system. To do this, we generate data using Generative Adversarial Networks (GANs) and propose a classification method using Convolutional Neural Networks (CNNs). Through this approach, we can confirm that the accuracy is improved when applied to the NSL-KDD and UNSW-NB15 datasets.

Small Sample Face Recognition Algorithm Based on Novel Siamese Network

  • Zhang, Jianming;Jin, Xiaokang;Liu, Yukai;Sangaiah, Arun Kumar;Wang, Jin
    • Journal of Information Processing Systems
    • /
    • v.14 no.6
    • /
    • pp.1464-1479
    • /
    • 2018
  • In face recognition, sometimes the number of available training samples for single category is insufficient. Therefore, the performances of models trained by convolutional neural network are not ideal. The small sample face recognition algorithm based on novel Siamese network is proposed in this paper, which doesn't need rich samples for training. The algorithm designs and realizes a new Siamese network model, SiameseFacel, which uses pairs of face images as inputs and maps them to target space so that the $L_2$ norm distance in target space can represent the semantic distance in input space. The mapping is represented by the neural network in supervised learning. Moreover, a more lightweight Siamese network model, SiameseFace2, is designed to reduce the network parameters without losing accuracy. We also present a new method to generate training data and expand the number of training samples for single category in AR and labeled faces in the wild (LFW) datasets, which improves the recognition accuracy of the models. Four loss functions are adopted to carry out experiments on AR and LFW datasets. The results show that the contrastive loss function combined with new Siamese network model in this paper can effectively improve the accuracy of face recognition.

Supporting ROI transmission of 3D Point Cloud Data based on 3D Manifesto (3차원 Manifesto 기반 3D Point Cloud Data의 ROI 전송 지원 방안)

  • Im, Jiehon;Kim, Junsik;Rhyu, Sungryeul;Kim, Hoejung;Kim, Sang IL;Kim, Kyuheon
    • Journal of the Semiconductor & Display Technology
    • /
    • v.17 no.4
    • /
    • pp.21-26
    • /
    • 2018
  • Recently, the emergence of 3D cameras, 3D scanners and various cameras including Lidar is expected to be applied to applications such as AR, VR, and autonomous mobile vehicles that deal with 3D data. In Particular, the 3D point cloud data consisting of tens to hundreds of thousands of 3D points is rapidly increased in capacity compared with 2D data, Efficient encoding / decoding technology for smooth service within a limited bandwidth, and efficient service provision technology for differentiating the area of interest and the surrounding area are needed. In this paper, we propose a new quality parameter considering characteristics of 3D point cloud instead of quality change based on assumed video codec in MPEG V-PCC used in 3D point cloud compression, 3D Grid division method and representation for selectively transmitting 3D point clouds according to user's area of interest, and propose a new 3D Manifesto. By using the proposed technique, it is possible to generate more bitrate images, and it is confirmed that the efficiency of network, decoder, and renderer can be increased while selectively transmitting as needed.

Damage detection in structures using modal curvatures gapped smoothing method and deep learning

  • Nguyen, Duong Huong;Bui-Tien, T.;Roeck, Guido De;Wahab, Magd Abdel
    • Structural Engineering and Mechanics
    • /
    • v.77 no.1
    • /
    • pp.47-56
    • /
    • 2021
  • This paper deals with damage detection using a Gapped Smoothing Method (GSM) combined with deep learning. Convolutional Neural Network (CNN) is a model of deep learning. CNN has an input layer, an output layer, and a number of hidden layers that consist of convolutional layers. The input layer is a tensor with shape (number of images) × (image width) × (image height) × (image depth). An activation function is applied each time to this tensor passing through a hidden layer and the last layer is the fully connected layer. After the fully connected layer, the output layer, which is the final layer, is predicted by CNN. In this paper, a complete machine learning system is introduced. The training data was taken from a Finite Element (FE) model. The input images are the contour plots of curvature gapped smooth damage index. A free-free beam is used as a case study. In the first step, the FE model of the beam was used to generate data. The collected data were then divided into two parts, i.e. 70% for training and 30% for validation. In the second step, the proposed CNN was trained using training data and then validated using available data. Furthermore, a vibration experiment on steel damaged beam in free-free support condition was carried out in the laboratory to test the method. A total number of 15 accelerometers were set up to measure the mode shapes and calculate the curvature gapped smooth of the damaged beam. Two scenarios were introduced with different severities of the damage. The results showed that the trained CNN was successful in detecting the location as well as the severity of the damage in the experimental damaged beam.

Generating GAN-based Virtual data to Prevent the Spread of Highly Pathogenic Avian Influenza(HPAI) (고위험성 조류인플루엔자(HPAI) 확산 방지를 위한 GAN 기반 가상 데이터 생성)

  • Choi, Dae-Woo;Han, Ye-Ji;Song, Yu-Han;Kang, Tae-Hun;Lee, Won-Been
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.69-76
    • /
    • 2020
  • This study was conducted with the support of the Information and Communication Technology Promotion Center, funded by the government (Ministry of Science and ICT) in 2019. Highly pathogenic avian influenza (HPAI) is an acute infectious disease of birds caused by highly pathogenic avian influenza virus infection, causing serious damage to poultry such as chickens and ducks. High pathogenic avian influenza (HPAI) is caused by focusing on winter rather than year-round, and sometimes does not occur at all during a certain period of time. Due to these characteristics of HPAI, there is a problem that does not accumulate enough actual data. In this paper study, GAN network was utilized to generate actual similar data containing missing values and the process is introduced. The results of this study can be used to measure risk by generating realistic simulation data for certain times when HPAI did not occur.