• Title/Summary/Keyword: Generate Data

Search Result 3,066, Processing Time 0.026 seconds

Implementation of Encoder/Decoder to Support SNN Model in an IoT Integrated Development Environment based on Neuromorphic Architecture (뉴로모픽 구조 기반 IoT 통합 개발환경에서 SNN 모델을 지원하기 위한 인코더/디코더 구현)

  • Kim, Hoinam;Yun, Young-Sun
    • Journal of Software Assessment and Valuation
    • /
    • v.17 no.2
    • /
    • pp.47-57
    • /
    • 2021
  • Neuromorphic technology is proposed to complement the shortcomings of existing artificial intelligence technology by mimicking the human brain structure and computational process with hardware. NA-IDE has also been proposed for developing neuromorphic hardware-based IoT applications. To implement an SNN model in NA-IDE, commonly used input data must be transformed for use in the SNN model. In this paper, we implemented a neural coding method encoder component that converts image data into a spike train signal and uses it as an SNN input. The decoder component is implemented to convert the output back to image data when the SNN model generates a spike train signal. If the decoder component uses the same parameters as the encoding process, it can generate static data similar to the original data. It can be used in fields such as image-to-image and speech-to-speech to transform and regenerate input data using the proposed encoder and decoder.

Discovery and Functional Study of a Novel Genomic Locus Homologous to Bα-Mating-Type Sublocus of Lentinula edodes

  • Lee, Yun Jin;Kim, Eunbi;Eom, Hyerang;Yang, Seong-Hyeok;Choi, Yeon Jae;Ro, Hyeon-Su
    • Mycobiology
    • /
    • v.49 no.6
    • /
    • pp.582-588
    • /
    • 2021
  • The interaction of mating pheromone and pheromone receptor from the B mating-type locus is the first step in the activation of the mushroom mating signal transduction pathway. The B mating-type locus of Lentinula edodes is composed of Bα and Bβ subloci, each of which contains genes for mating pheromone and pheromone receptor. Allelic variations in both subloci generate multiple B mating-types through which L. edodes maintains genetic diversity. In addition to the B mating-type locus, our genomic sequence analysis revealed the presence of a novel chromosomal locus 43.3 kb away from the B mating-type locus, containing genes for a pair of mating pheromones (PHBN1 and PHBN2) and a pheromone receptor (RCBN). The new locus (Bα-N) was homologous to the Bα sublocus, but unlike the multiallelic Bα sublocus, it was highly conserved across the wild and cultivated strains. The interactions of RcbN with various mating pheromones from the B and Bα-N mating-type loci were investigated using yeast model that replaced endogenous yeast mating pheromone receptor STE2 with RCBN. The yeast mating signal transduction pathway was only activated in the presence of PHBN1 or PHBN2 in the RcbN producing yeast, indicating that RcbN interacts with self-pheromones (PHBN1 and PHBN2), not with pheromones from the B mating-type locus. The biological function of the Bα-N locus was suggested to control the expression of A mating-type genes, as evidenced by the increased expression of two A-genes HD1 and HD2 upon the treatment of synthetic PHBN1 and PHBN2 peptides to the monokaryotic strain of L. edodes.

Application of Decision Tree to Classify Fall Risk Using Inertial Measurement Unit Sensor Data and Clinical Measurements

  • Junwoo Park;Jongwon Choi;Seyoung Lee;Kitaek Lim;Woochol Joseph Choi
    • Physical Therapy Korea
    • /
    • v.30 no.2
    • /
    • pp.102-109
    • /
    • 2023
  • Background: While efforts have been made to differentiate fall risk in older adults using wearable devices and clinical methodologies, technologies are still infancy. We applied a decision tree (DT) algorithm using inertial measurement unit (IMU) sensor data and clinical measurements to generate high performance classification models of fall risk of older adults. Objects: This study aims to develop a classification model of fall risk using IMU data and clinical measurements in older adults. Methods: Twenty-six older adults were assessed and categorized into high and low fall risk groups. IMU sensor data were obtained while walking from each group, and features were extracted to be used for a DT algorithm with the Gini index (DT1) and the Entropy index (DT2), which generated classification models to differentiate high and low fall risk groups. Model's performance was compared and presented with accuracy, sensitivity, and specificity. Results: Accuracy, sensitivity and specificity were 77.8%, 80.0%, and 66.7%, respectively, for DT1; and 72.2%, 91.7%, and 33.3%, respectively, for DT2. Conclusion: Our results suggest that the fall risk classification using IMU sensor data obtained during gait has potentials to be developed for practical use. Different machine learning techniques involving larger data set should be warranted for future research and development.

Development of a Resignation Prediction Model using HR Data (HR 데이터 기반의 퇴사 예측 모델 개발)

  • PARK, YUNJUNG;Lee, Do-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2021.05a
    • /
    • pp.100-103
    • /
    • 2021
  • Most companies study why employees resign their jobs to prevent the outflow of excellent human resources. To obtain the data needed for the study, employees are interviewed or surveyed before resignation. However, it is difficult to get accurate results because employees do not want to express their opinions that may be disadvantageous to working in a survey. Meanwhile, according to the data released by the Korea Labor Institute, the greater the difference between the minimum level of education required by companies and the level of employees' academic background, the greater the tendency to resign jobs. Therefore, based on these data, in this study, we would like to predict whether employees will leave the company based on data such as major, education level and company type. We generate four kinds of resignation prediction models using Decision Tree, XGBoost, kNN and SVM, and compared their respective performance. As a result, we could identify various factors that were not covered in previous study. It is expected that the resignation prediction model help companies recognize employees who intend to leave the company in advance.

  • PDF

Deep-Learning-Based Mine Detection Using Simulated Data (시뮬레이션 데이터 기반으로 학습된 딥러닝 모델을 활용한 지뢰식별연구)

  • Buhwan Jeon;Chunju Lee
    • Journal of The Korean Institute of Defense Technology
    • /
    • v.5 no.4
    • /
    • pp.16-21
    • /
    • 2023
  • Although the global number of landmines is on a declining trend, the damages caused by previously buried landmines persist. In light of this, the present study contemplates solutions to issues and constraints that may arise due to the improvement of mine detection equipment and the reduction in the number of future soldiers. Current mine detectors lack data storage capabilities, posing limitations on data collection for research purposes. Additionally, practical data collection in real-world environments demands substantial time and manpower. Therefore, in this study, gprMax simulation was utilized to generate data. The lightweight CNN-based model, MobileNet, was trained and validated with real data, achieving a high identification rate of 97.35%. Consequently, the potential integration of technologies such as deep learning and simulation into geographical detection equipment is highlighted, offering a pathway to address potential future challenges. The study aims to somewhat alleviate these issues and anticipates contributing to the development of our military capabilities in becoming a future scientific and technological force.

  • PDF

An Efficient Real-Time Image Reconstruction Scheme using Network m Multiple View and Multiple Cluster Environments (다시점 및 다중클러스터 환경에서 네트워크를 이용한 효율적인 실시간 영상 합성 기법)

  • You, Kang-Soo;Lim, Eun-Cheon;Sim, Chun-Bo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.11
    • /
    • pp.2251-2259
    • /
    • 2009
  • We propose an algorithm and system which generates 3D stereo image by composition of 2D image from 4 multiple clusters which 1 cluster was composed of 4 multiple cameras based on network. Proposed Schemes have a network-based client-server architecture for load balancing of system caused to process a large amounts of data with real-time as well as multiple cluster environments. In addition, we make use of JPEG compression and RAM disk method for better performance. Our scheme first converts input images from 4 channel, 16 cameras to binary image. And then we generate 3D stereo images after applying edge detection algorithm such as Sobel algorithm and Prewiit algorithm used to get disparities from images of 16 multiple cameras. With respect of performance results, the proposed scheme takes about 0.05 sec. to transfer image from client to server as well as 0.84 to generate 3D stereo images after composing 2D images from 16 multiple cameras. We finally confirm that our scheme is efficient to generate 3D stereo images in multiple view and multiple clusters environments with real-time.

Pattern Generation for Coding Error Detection in VHDL Behavioral-Level Designs (VHDL 행위-레벨 설계의 코딩오류 검출을 위한 패턴 생성)

  • Kim, Jong-Hyeon;Park, Seung-Gyu;Seo, Yeong-Ho;Kim, Dong-Uk
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.38 no.3
    • /
    • pp.185-197
    • /
    • 2001
  • Recently, the design method by VHDL coding and synthesis has been used widely. As the integration ratio increases, the amount design by VHDL at a time also increases so many coding errors occur in a design. Thus, lots of time and effort is dissipated to detect those coding errors. This paper proposed a method to verify the coding errors in VHDL behavioral-level designs. As the methodology, we chose the method to detect the coding error by applying the generated set of verifying patterns and comparing the responses from the error-free case(gold unit) and the real design. Thus, we proposed an algorithm to generate the verifying pattern set for the coding errors. Verifying pattern generation is peformed for each code and the coding errors are classified as two kind: condition errors and assignment errors. To generate the patterns, VHDL design is first converted into the corresponding CDFG(Control & Data Flow Graph) and the necessary information is extracted by searching the paths in CDFG. Path searching method consists of forward searching and backward searching from the site where it is assumed that coding error occurred. The proposed algorithm was implemented with C-language. We have applied the proposed algorithm to several example VHDL behavioral-level designs. From the results, all the patterns for all the considered coding errors in each design could be generated and all the coding errors were detectable. For the time to generate the verifying patterns, all the considered designed took less than 1 [sec] of CPU time in Pentium-II 400MHz environments. Consequently, the verification method proposed in this paper is expected to reduce the time and effort to verify the VHDL behavioral-level designs very much.

  • PDF

Design and Analysis of Pseudorandom Number Generators Based on Programmable Maximum Length CA (프로그램 가능 최대길이 CA기반 의사난수열 생성기의 설계와 분석)

  • Choi, Un-Sook;Cho, Sung-Jin;Kim, Han-Doo;Kang, Sung-Won
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.319-326
    • /
    • 2020
  • PRNGs(Pseudorandom number generators) are essential for generating encryption keys for to secure online communication. A bitstream generated by the PRNG must be generated at high speed to encrypt the big data effectively in a symmetric key cryptosystem and should ensure the randomness of the level to pass through the several statistical tests. CA(Cellular Automata) based PRNGs are known to be easy to implement in hardware and to have better randomness than LFSR based PRNGs. In this paper, we design PRNGs based on PMLCA(Programable Maximum Length CA) that can generate effective key sequences in symmetric key cryptosystem. The proposed PRNGs generate bit streams through nonlinear control method. First, we design a PRNG based on an (m,n)-cell PMLCA ℙ with a single complement vector that produces linear sequences with the long period and analyze the period and the generating polynomial of ℙ. Next, we design an (m,n)-cell PC-MLCA based PRNG with two complement vectors that have the same period as ℙ and generate nonlinear sequences, and analyze the location of outputting the nonlinear sequence.

Designing a Repository Independent Model for Mining and Analyzing Heterogeneous Bug Tracking Systems (다형의 버그 추적 시스템 마이닝 및 분석을 위한 저장소 독립 모델 설계)

  • Lee, Jae-Kwon;Jung, Woo-Sung
    • Journal of the Korea Society of Computer and Information
    • /
    • v.19 no.9
    • /
    • pp.103-115
    • /
    • 2014
  • In this paper, we propose UniBAS(Unified Bug Analysis System) to provide a unified repository model by integrating the extracted data from the heterogeneous bug tracking systems. The UniBAS reduces the cost and complexity of the MSR(Mining Software Repositories) research process and enables the researchers to focus on their logics rather than the tedious and repeated works such as extracting repositories, processing data and building analysis models. Additionally, the system not only extracts the data but also automatically generates database tables, views and stored procedures which are required for the researchers to perform query-based analysis easily. It can also generate various types of exported files for utilizing external analysis tools or managing research data. A case study of detecting duplicate bug reports from the Firfox project of the Mozilla site has been performed based on the UniBAS in order to evaluate the usefulness of the system. The results of the experiments with various algorithms of natural language processing and flexible querying to the automatically extracted data also showed the effectiveness of the proposed system.

Design and Implementation of a XML2RDB Middleware for Partition Storing of XML Documents (XML 문서의 분할저장을 위한 XML2RDB 미들웨어의 설계 및 구현)

  • 박성진
    • The Journal of Society for e-Business Studies
    • /
    • v.8 no.3
    • /
    • pp.1-16
    • /
    • 2003
  • XML(Extensible Markup Language) is an emerging standard for data representation and exchange in e-commerce and internet-based information. However, to realize this potential, it is necessary to be able to extract structured data from XML documents and store it in a database, as well as to generate XML documents from data extracted from a database. Although many DBMS vendors are scrambling to extend their products to handle XML, there is a need for a lightweight, DBMS and platform-independent XML middleware as well. In this paper we describe such a XML2RDB middleware, that solves the following problems . generating relational schema from XML DTDs for storage of XML documents, importing data from XML documents into relational tables, creating XML documents according to a XMLQL(XML Query Language) from data extracted from a database.

  • PDF