Park, Youngjun;Choi, Yun-Young;Moon, Yong-Jae;Park, Eunsu;Lim, Beomdu;Kim, Taeyoung
The Bulletin of The Korean Astronomical Society
/
v.44
no.2
/
pp.78.1-78.1
/
2019
There are a huge number of faint objects that have not been observed due to the lack of large and deep surveys. In this study, we demonstrate that a deep learning approach can produce a better quality deep image from a single pass imaging so that could be an alternative of conventional image stacking technique or the expensive large and deep surveys. Using data from the Sloan Digital Sky Survey (SDSS) stripe 82 which provide repeatedly scanned imaging data, a training data set is constructed: g-, r-, and i-band images of single pass data as an input and r-band co-added image as a target. Out of 151 SDSS fields that have been repeatedly scanned 34 times, 120 fields were used for training and 31 fields for validation. The size of a frame selected for the training is 1k by 1k pixel scale. To avoid possible problems caused by the small number of training sets, frames are randomly selected within that field each iteration of training. Every 5000 iterations of training, the performance were evaluated with RMSE, peak signal-to-noise ratio which is given on logarithmic scale, structural symmetry index (SSIM) and difference in SSIM. We continued the training until a GAN model with the best performance is found. We apply the best GAN-model to NGC0941 located in SDSS stripe 82. By comparing the radial surface brightness and photometry error of images, we found the possibility that this technique could generate a deep image with statistics close to the stacked image from a single-pass image.
Journal of the Korea Institute of Information Security & Cryptology
/
v.33
no.6
/
pp.1055-1065
/
2023
Recently, various studies using deep reinforcement learning (deep RL) technology have been conducted to solve complex problems using big data collected at industrial internet of things. Deep RL uses reinforcement learning"s trial-and-error algorithms and cumulative compensation functions to generate and learn its own data and quickly explore neural network structures and parameter decisions. However, studies so far have shown that the larger the size of the learning data is, the higher are the memory usage and search time, and the lower is the accuracy. In this study, model-agnostic learning for efficient federated deep RL was utilized to solve privacy invasion by increasing robustness as 55.9% and achieve 97.8% accuracy, an improvement of 5.5% compared with the comparative optimization-based meta learning models, and to reduce the delay time by 28.9% on average.
In this study, we explored a method for assessing the extent of damage caused by chemical substances at an accident site through the use of a vegetation index. Data collection involved the deployment of two different drone types, and the damaged area was determined using photogrammetry technology from the 3D point cloud data. To create a vegetation index image, we utilized spectral band data from a multi-spectral sensor to generate an orthoimage. Subsequently, we conducted statistical analyses of the accident site with respect to the damaged area using a predefined threshold value. The Kappa values for the vegetation index, based on the near-infrared band and the green band, were found to be 0.79 and 0.76, respectively. These results suggest that the vegetation index-based approach for analyzing damage areas can be effectively applied in investigations of chemical accidents.
Proceedings of the National Institute of Ecology of the Republic of Korea
/
v.4
no.4
/
pp.159-176
/
2023
The conservation of the raccoon dog (Nyctereutes procyonoides) in South Korea requires the protection and preservation of natural habitats while additionally ensuring coexistence with human activities. Applying habitat map modeling techniques provides information regarding the distributional patterns of raccoon dogs and assists in the development of future conservation strategies. The purpose of this study is to generate potential habitat distribution maps for the raccoon dog in South Korea using geospatial technology-based models. These models include the frequency ratio (FR) as a bivariate statistical approach, the group method of data handling (GMDH) as a machine learning algorithm, and convolutional neural network (CNN) and long short-term memory (LSTM) as deep learning algorithms. Moreover, the imperialist competitive algorithm (ICA) is used to fine-tune the hyperparameters of the machine learning and deep learning models. Moreover, there are 14 habitat characteristics used for developing the models: elevation, slope, valley depth, topographic wetness index, terrain roughness index, slope height, surface area, slope length and steepness factor (LS factor), normalized difference vegetation index, normalized difference water index, distance to drainage, distance to roads, drainage density, and morphometric features. The accuracy of prediction is evaluated using the area under the receiver operating characteristic curve. The results indicate comparable performances of all models. However, the CNN demonstrates superior capacity for prediction, achieving accuracies of 76.3% and 75.7% for the training and validation processes, respectively. The maps of potential habitat distribution are generated for five different levels of potentiality: very low, low, moderate, high, and very high.
Frans Prathama;Seokrae Won;Iq Reviessay Pulshashi;Riska Asriana Sutrisnowati
Journal of the Korea Society of Computer and Information
/
v.29
no.6
/
pp.101-112
/
2024
In this paper, we present EDF (Event Data Factory), an interactive tool designed to assist event log generation for process mining. EDF integrates various data connectors to improve its capability to assist users in connecting to diverse data sources. Our tool employs low-code/no-code technology, along with graph-based visualization, to help non-expert users understand process flow and enhance the user experience. By utilizing metadata information, EDF allows users to efficiently generate an event log containing case, activity, and timestamp attributes. Through log quality metrics, our tool enables users to assess the generated event log quality. We implement EDF under a cloud-based architecture and run a performance evaluation. Our case study and results demonstrate the usability and applicability of EDF. Finally, an observational study confirms that EDF is easy to use and beneficial, expanding small and medium-sized enterprises' (SMEs) access to process mining applications.
Journal of the Korea Society of Computer and Information
/
v.29
no.1
/
pp.77-84
/
2024
In this paper, we propose a method for accurately and rapidly detecting defects in wire harnesses by utilizing computer vision to calculate six crucial measurement values: the length of crimped terminals, the dimensions (width) of terminal ends, and the width of crimped sections (wire and core portions). We employ Harris corner detection to locate object positions from two types of data. Additionally, we generate reference points for extracting measurement values by utilizing features specific to each measurement area and exploiting the contrast in shading between the background and objects, thus reflecting the slope of each sample. Subsequently, we introduce a method using the Euclidean distance and correction coefficients to predict values, allowing for the prediction of measurements regardless of changes in the wire's position. We achieve high accuracy for each measurement type, 99.1%, 98.7%, 92.6%, 92.5%, 99.9%, and 99.7%, achieving outstanding overall average accuracy of 97% across all measurements. This inspection method not only addresses the limitations of conventional visual inspections but also yields excellent results with a small amount of data. Moreover, relying solely on image processing, it is expected to be more cost-effective and applicable with less data compared to deep learning methods.
The goal of this system is to effectively summarize and visualize important DICOM image data in the medical field. Using React and Node.js, the system collects and parses DICOM images, extracting critical medical information in the process. It then employs a large language model (LLM) to generate automatic summary reports, providing users with personalized medical information. This approach enhances accessibility to medical data and leverages web technologies to process large-scale data quickly and reliably. The system also aims to improve communication between patients and doctors, enhancing the quality of care and enabling medical staff to make faster, more accurate decisions. Additionally, it seeks to improve patients' medical experiences and overall satisfaction. Ultimately, the system aims to improve the quality of healthcare services.
A data stream is a massive unbounded sequence of data elements continuously generated at a rapid rate. Due to this reason, memory usage for data stream analysis should be confined finitely although new data elements are continuously generated in a data stream. To satisfy this requirement, data stream processing sacrifices the correctness of its analysis result by allowing some errors. The old distribution statistics are diminished by a predefined decay rate as time goes by, so that the effect of the obsolete information on the current result of clustering can be eliminated without maintaining any data element physically. This paper proposes a grid based clustering algorithm for a data stream. Given a set of initial grid cells, the dense range of a grid cell is recursively partitioned into a smaller cell based on the distribution statistics of data elements by a top down manner until the smallest cell, called a unit cell, is identified. Since only the distribution statistics of data elements are maintained by dynamically partitioned grid cells, the clusters of a data stream can be effectively found without maintaining the data elements physically. Furthermore, the memory usage of the proposed algorithm is adjusted adaptively to the size of confined memory space by flexibly resizing the size of a unit cell. As a result, the confined memory space can be fully utilized to generate the result of clustering as accurately as possible. The proposed algorithm is analyzed by a series of experiments to identify its various characteristics
Journal of the Institute of Electronics Engineers of Korea CI
/
v.42
no.4
s.304
/
pp.33-42
/
2005
This paper proposes a classification method for gene expression data, using membership function and neural network. The gene expression is a process to produce mRNA and protains which generate a living body, and the gene expression data is important to find out the functions and correlations of genes. Such gene expression data can be obtained from DNA 칩 massively and quickly. However, thousands of gene expression data may not be useful until it is well organized. Therefore a classification method is necessary to find the characteristics of gene data acquired from the gene expression. In the proposed method, a set of gene data is extracted according to the fisher's criterion, because we assume that selected gene data is the well-classified data sample. However, the selected gene data does not guarantee well-classified data sample and we calculate feature values using membership function to reduce the influence of outliers in gene data. Feature vectors estimated from the selected feature values are used to train back propagation neural network. The experimental results show that the clustering performance of the proposed method has been improved compared to other existing methods in various gene expression data.
The Journal of Korea Institute of Information, Electronics, and Communication Technology
/
v.15
no.1
/
pp.36-44
/
2022
Reversible data hiding techniques have been developed to hide confidential data in the image by shifting the histogram of the image. These techniques have a weakness in which the security of hidden confidential data is weak. In this paper, to solve this drawback, we propose a technique of triple encrypting confidential data using pixel value information and hiding it in the cover image. When confidential data is triple encrypted using the proposed technique and hidden in the cover image to generate a stego-image, since encryption based on pixel information is performed three times, the security of confidential data hidden by triple encryption is greatly improved. In the experiment to measure the performance of the proposed technique, even if the triple-encrypted confidential data was extracted from the stego-image, the original confidential data could not be extracted without the encryption keys. And since the image quality of the stego-image is 48.39dB or higher, it was not possible to recognize whether confidential data was hidden in the stego-image, and more than 30,487 bits of confidential data were hidden in the stego-image. The proposed technique can extract the original confidential data from the triple-encrypted confidential data hidden in the stego-image without loss, and can restore the original cover image from the stego-image without distortion. Therefore, the proposed technique can be effectively used in applications such as military, medical, digital library, where security is important and it is necessary to completely restore the original cover image.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.