• Title/Summary/Keyword: Generalized regression neural networks

Search Result 31, Processing Time 0.035 seconds

Effective Eye Detection for Face Recognition to Protect Medical Information (의료정보 보호를 위해 얼굴인식에 필요한 효과적인 시선 검출)

  • Kim, Suk-Il;Seok, Gyeong-Hyu
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.5
    • /
    • pp.923-932
    • /
    • 2017
  • In this paper, we propose a GRNN(: Generalized Regression Neural Network) algorithms for new eyes and face recognition identification system to solve the points that need corrective action in accordance with the existing problems of facial movements gaze upon it difficult to identify the user and. Using a Kalman filter structural information elements of a face feature to determine the authenticity of the face was estimated future location using the location information of the current head and the treatment time is relatively fast horizontal and vertical elements of the face using a histogram analysis the detected. And the light obtained by configuring the infrared illuminator pupil effects in real-time detection of the pupil, the pupil tracking was to extract the text print vector. The abstract is to be in fully-justified italicized text as it is here, below the author information.

Application of neural networks and an adapted wavelet packet for generating artificial ground motion

  • Asadi, A.;Fadavi, M.;Bagheri, A.;Ghodrati Amiri, G.
    • Structural Engineering and Mechanics
    • /
    • v.37 no.6
    • /
    • pp.575-592
    • /
    • 2011
  • For seismic resistant design of critical structures, a dynamic analysis, either response spectrum or time history is frequently required. Owing to the lack of recorded data and the randomness of earthquake ground motion that may be experienced by structure in the future, usually it is difficult to obtain recorded data which fit the requirements (site type, epicenteral distance, etc.) well. Therefore, the artificial seismic records are widely used in seismic designs, verification of seismic capacity and seismic assessment of structures. The purpose of this paper is to develop a numerical method using Artificial Neural Network (ANN) and wavelet packet transform in best basis method which is presented for the decomposition of artificial earthquake records consistent with any arbitrarily specified target response spectra requirements. The ground motion has been modeled as a non-stationary process using wavelet packet. This study shows that the procedure using ANN-based models and wavelet packets in best-basis method are applicable to generate artificial earthquakes compatible with any response spectra. Several numerical examples are given to verify the developed model.

The Derivation of Rating Curve using GRNNM and GA (GRNNM과 GA를 이용한 Rating Curve의 유도)

  • Kim, Seong-Won
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.679-683
    • /
    • 2005
  • The technique which connects Generalized Regression Neural Networks Model(GRNNM) with Genetic Algorithm (CA) is used to derive rating curve in the river basin. GRNNM architecture consists of 4 layers ; input, hidden, summation and output layer. GA method is applied to estimate the optimal smoothing factor when GRNNM is trained. The derivation of rating curve using GRNNM is considered different kinds of hydraulic characteristics such as water stage, area and mean velocity and is applied two stage stations; Sunsan and Jungam. Furthermore, it is compared with conventional curve-fitting method. Through the training and validation performance, the results show that GRNNM is much superior as compared to the conventional curve-fitting method.

  • PDF

Real Time Eye and Gaze Tracking (실시간 눈과 시선 위치 추적)

  • Cho, Hyun-Seob;Ryu, In-Ho;Kim, Hee-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2839-2842
    • /
    • 2005
  • 본 논문에서는 새로운 실시간 시선 추적 방식을 제안하고자한다. 기존의 시선추적 방식은 사용자가 머리를 조금만 움직여도 잘못된 결과를 얻을 수가 있었고 각각의 사용자에 대하여 교정 과정을 수행할 필요가 있었다. 따라서 제안된 시선 추적 방법은 적외선 조명과 Generalized Regression Neural Networks(GRNN)를 이용함으로써 교정 과정 없이 머리의 움직임이 큰 경우에도 견실하고 정확한 시선 추적을 가능하도록 하였다. GRNN을 사용함으로써 매핑기능은 원활하게 할 수 있었고, 머리의 움직임은 시선 매핑 기능에 의해 적절하게 시선추적에 반영되어 얼굴의 움직임이 있는 경우에도 시선추적이 가능토록 하였고, 매핑 기능을 일반화함으로써 각각의 교정과정을 생략 할 수 있게 하여 학습에 참여하지 않은 다른 사용자도 시선 추적을 가능케 하였다. 실험결과 얼굴의 움직임이 있는 경우에는 평균 90% 다른 사용자에 대해서는 평균 85%의 시선 추적 결과를 나타내었다.

  • PDF

Real Time Eye and Gaze Tracking (트래킹 Gaze와 실시간 Eye)

  • Min Jin-Kyoung;Cho Hyeon-Seob
    • Proceedings of the KAIS Fall Conference
    • /
    • 2004.11a
    • /
    • pp.234-239
    • /
    • 2004
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process fur each person, our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

  • PDF

Real Time Eye and Gaze Tracking

  • Park Ho Sik;Nam Kee Hwan;Cho Hyeon Seob;Ra Sang Dong;Bae Cheol Soo
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.857-861
    • /
    • 2004
  • This paper describes preliminary results we have obtained in developing a computer vision system based on active IR illumination for real time gaze tracking for interactive graphic display. Unlike most of the existing gaze tracking techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze tracker can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using the Generalized Regression Neural Networks (GRNN). With GRNN, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. The effectiveness of our gaze tracker is demonstrated by preliminary experiments that involve gaze-contingent interactive graphic display.

  • PDF

Prediction of Scour Depth Using Incorporation of Cluster Analysis into Artificial Neural Networks (인공신경망모형과 군집분석을 이용한 교각 세굴심 예측)

  • Lee, Chang-Hwan;Ahn, Jae-Hyun;Lee, Joo Heon;Kim, Tea-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.29 no.2B
    • /
    • pp.111-120
    • /
    • 2009
  • A local scour around a bridge pier is known as one of important factors of bridge collapse. Two approaches are usually used in estimating a scour depth in practice. One is to use empirical formulas, and the other is to use computational methods. But the use of empirical formulas is limited to predict a scour depth under similar conditions to which the formulas were derived. Computational methods are currently too expensive to be applied to practical engineering problems. This study presented the application of artificial neural networks (ANN) to the prediction of a scour depth around a bridge pier at an equilibrium state. This study also investigated various ANN algorithms for estimating a scour depth, such as Backpropagation Network, Radial Basis Function Network, and Generalized Regression Network. Preliminary study showed that ANN models resulted in very wide range of errors in predicting a scour depth. To solve this problem this study incorporated cluster analysis into ANN. The incorporation of cluster analysis provided better estimations of scour depth up to 42% compared with other approaches.

Neural Networks-Genetic Algorithm Model for Modeling of Nonlinear Evaporation and Evapotranspiration Time Series 1. Theory and Application of the Model (비선형 증발량 및 증발산량 시계열의 모형화를 위한 신경망-유전자 알고리즘 모형 1. 모형의 이론과 적용)

  • Kim, Sung-Won;Kim, Hung-Soo
    • Journal of Korea Water Resources Association
    • /
    • v.40 no.1 s.174
    • /
    • pp.73-88
    • /
    • 2007
  • The goal of this research is to develop and apply the generalized regression neural networks model(GRNNM) embedding genetic algorithm(GA) for the estimation and calculation of the pan evaporation(PE), which is missed or ungaged and of the alfalfa reference evapotranspiration ($ET_r$), which is not measured in South Korea. Since the observed data of the alfalfa 37. using Iysimeter have not been measured for a long time in South Korea, the Penman-Monteith(PM) method is used to estimate the observed alfalfa $ET_r$. In this research, we develop the COMBINE-GRNNM-GA(Type-1) model for the calculation of the optimal PE and the alfalfa $ET_r$. The suggested COMBINE-GRNNM-GA(Type-1) model is evaluated through training, testing, and reproduction processes. The COMBINE-GRNNM-GA(Type-1) model can evaluate the suggested climatic variables and also construct the reliable data for the PE and the alfalfa $ET_r$. We think that the constructive data could be used as the reference data for irrigation and drainage networks system in South Korea.

Real Time Gaze Discrimination for Human Computer Interaction (휴먼 컴퓨터 인터페이스를 위한 실시간 시선 식별)

  • Park Ho sik;Bae Cheol soo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.3C
    • /
    • pp.125-132
    • /
    • 2005
  • This paper describes a computer vision system based on active IR illumination for real-time gaze discrimination system. Unlike most of the existing gaze discrimination techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze discrimination system can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using generalized regression neural networks (GRNNs). With GRNNs, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Futhermore, the mapping function can generalize to other individuals not used in the training. To further improve the gaze estimation accuracy, we employ a reclassification scheme that deals with the classes that tend to be misclassified. This leads to a 10% improvement in classification error. The angular gaze accuracy is about 5°horizontally and 8°vertically. The effectiveness of our gaze tracker is demonstrated by experiments that involve gaze-contingent interactive graphic display.

Real Time Gaze Discrimination for Computer Interface (컴퓨터 인터페이스를 위한 실시간 시선 식별)

  • Hwang, Suen-Ki;Kim, Moon-Hwan
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.3 no.1
    • /
    • pp.38-46
    • /
    • 2010
  • This paper describes a computer vision system based on active IR illumination for real-time gaze discrimination system. Unlike most of the existing gaze discrimination techniques, which often require assuming a static head to work well and require a cumbersome calibration process for each person, our gaze discrimination system can perform robust and accurate gaze estimation without calibration and under rather significant head movement. This is made possible by a new gaze calibration procedure that identifies the mapping from pupil parameters to screen coordinates using generalized regression neural networks (GRNNs). With GRNNs, the mapping does not have to be an analytical function and head movement is explicitly accounted for by the gaze mapping function. Furthermore, the mapping function can generalize to other individuals not used in the training. To further improve the gaze estimation accuracy, we employ a reclassification scheme that deals with the classes that tend to be misclassified. This leads to a 10% improvement in classification error. The angular gaze accuracy is about $5^{\circ}$horizontally and $8^{\circ}$vertically. The effectiveness of our gaze tracker is demonstrated by experiments that involve gaze-contingent interactive graphic display.

  • PDF