• Title/Summary/Keyword: Generalized matrix algebras

Search Result 11, Processing Time 0.021 seconds

ON GENERALIZED JORDAN DERIVATIONS OF GENERALIZED MATRIX ALGEBRAS

  • Ashraf, Mohammad;Jabeen, Aisha
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.3
    • /
    • pp.733-744
    • /
    • 2020
  • Let 𝕽 be a commutative ring with unity, A and B be 𝕽-algebras, M be a (A, B)-bimodule and N be a (B, A)-bimodule. The 𝕽-algebra 𝕾 = 𝕾(A, M, N, B) is a generalized matrix algebra defined by the Morita context (A, B, M, N, 𝝃MN, ΩNM). In this article, we study generalized derivation and generalized Jordan derivation on generalized matrix algebras and prove that every generalized Jordan derivation can be written as the sum of a generalized derivation and antiderivation with some limitations. Also, we show that every generalized Jordan derivation is a generalized derivation on trivial generalized matrix algebra over a field.

ADDITIVITY OF JORDAN TRIPLE PRODUCT HOMOMORPHISMS ON GENERALIZED MATRIX ALGEBRAS

  • Kim, Sang Og;Park, Choonkil
    • Bulletin of the Korean Mathematical Society
    • /
    • v.50 no.6
    • /
    • pp.2027-2034
    • /
    • 2013
  • In this article, it is proved that under some conditions every bijective Jordan triple product homomorphism from generalized matrix algebras onto rings is additive. As a corollary, we obtain that every bijective Jordan triple product homomorphism from $M_n(\mathcal{A})$ ($\mathcal{A}$ is not necessarily a prime algebra) onto an arbitrary ring $\mathcal{R}^{\prime}$ is additive.

JORDAN HIGHER DERIVATIONS ON TRIVIAL EXTENSION ALGEBRAS

  • Vishki, Hamid Reza Ebrahimi;Mirzavaziri, Madjid;Moafian, Fahimeh
    • Communications of the Korean Mathematical Society
    • /
    • v.31 no.2
    • /
    • pp.247-259
    • /
    • 2016
  • We first give the constructions of (Jordan) higher derivations on a trivial extension algebra and then we provide some sufficient conditions under which a Jordan higher derivation on a trivial extension algebra is a higher derivation. We then proceed to the trivial generalized matrix algebras as a special trivial extension algebra. As an application we characterize the construction of Jordan higher derivations on a triangular algebra. We also provide some illuminating examples of Jordan higher derivations on certain trivial extension algebras which are not higher derivations.

ON GENERALIZED GRADED CROSSED PRODUCTS AND KUMMER SUBFIELDS OF SIMPLE ALGEBRAS

  • Bennis, Driss;Mounirh, Karim;Taraza, Fouad
    • Bulletin of the Korean Mathematical Society
    • /
    • v.56 no.4
    • /
    • pp.939-959
    • /
    • 2019
  • Using generalized graded crossed products, we give necessary and sufficient conditions for a simple algebra over a Henselian valued field (under some hypotheses) to have Kummer subfields. This study generalizes some known works. We also study many properties of generalized graded crossed products and conditions for embedding a graded simple algebra into a matrix algebra of a graded division ring.

Complete Reducibility of some Modules for a Generalized Kac Moody Lie Algebra

  • Kim, Wansoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.5 no.1
    • /
    • pp.195-201
    • /
    • 1992
  • Let G(A) denote a generalized Kac Moody Lie algebra associated to a symmetrizable generalized Cartan matrix A. In this paper, we study on representations of G(A). Highest weight modules and the category O are described. In the main theorem we show that some G(A) modules from the category O are completely reducible. Also a criterion for irreducibility of highest weight modules is obtained. This was proved in [3] for the case of Kac Moody Lie algebras.

  • PDF

A NOTE ON THE RANK 2 SYMMETRIC HYPERBOLIC KAC-MOODY ALGEBRAS

  • Kim, Yeon-Ok
    • The Pure and Applied Mathematics
    • /
    • v.17 no.1
    • /
    • pp.107-113
    • /
    • 2010
  • In this paper, we study the root system of rank 2 symmetric hyperbolic Kac-Moody algebras. We give the sufficient conditions for existence of imaginary roots of square length -2k ($k\;{\in}\;\mathbb{Z}$>0). We also give several relations between the roots on g(A).

TENSOR PRODUCTS OF C*-ALGEBRAS WITH FIBRES GENERALIZED NONCOMMUTATIVE TORI AND CUNTZ ALGEBRAS

  • Boo, Deok-Hoon;Park, Chun-Gil
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.13 no.1
    • /
    • pp.139-144
    • /
    • 2000
  • The generalized noncommutative torus $T_{\rho}^d$ of rank m was defined in [2]. Assume that for the completely irrational noncommutative subtorus $A_{\rho}$ of rank m of $T_{\rho}^d$ there is no integer q > 1 such that $tr(K_0(A_{\rho}))=\frac{1}{q}{\cdot}tr(K_0(A_{\rho^{\prime}}))$ for $A_{\rho^{\prime}}$ a completely irrational noncommutative torus of rank m. All $C^*$-algebras ${\Gamma}({\eta})$ of sections of locally trivial $C^*$-algebra bundles ${\eta}$ over $M=\prod_{i=1}^{e}S^{2k_i}{\times}\prod_{i=1}^{s}S^{2n_i+1}$, $\prod_{i=1}^{s}\mathbb{PR}_{2n_i}$, or $\prod_{i=1}^{s}L_{k_i}(n_i)$ with fibres $T_{\rho}^d{\otimes}M_c(\mathbb{C})$ were constructed in [6, 7, 8]. We prove that ${\Gamma}({\eta}){\otimes}M_{p^{\infty}}$ is isomorphic to $C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C}){\otimes}M_{p^{\infty}}$ if and only if the set of prime factors of cd is a subset of the set of prime factors of p, that $\mathcal{O}_{2u}{\otimes}{\Gamma}({\eta})$ is isomorphic to $\mathcal{O}_{2u}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if and only if cd and 2u - 1 are relatively prime, and that $\mathcal{O}_{\infty}{\otimes}{\Gamma}({\eta})$ is not isomorphic to $\mathcal{O}_{\infty}{\otimes}C(M){\otimes}A_{\rho}{\otimes}M_{cd}(\mathbb{C})$ if cd > 1 when no non-trivial matrix algebra can be ${\Gamma}({\eta})$.

  • PDF

THE TENSOR PRODUCTS OF SPHERICAL NON-COMMUTATIVE TORI WITH CUNTZ ALGEBRAS

  • Park, Chun-Gil;Boo, Deok-Hoon
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.10 no.1
    • /
    • pp.127-139
    • /
    • 1997
  • The spherical non-commutative $\mathbb{S}_{\omega}$ were defined in [2,3]. Assume that no non-trivial matrix algebra can be factored out of the $\mathbb{S}_{\omega}$, and that the fibres are isomorphic to the tensor product of a completely irrational non-commutative torus with a matrix algebra $M_k(\mathbb{C})$. It is shown that the tensor product of the spherical non-commutative torus $\mathbb{S}_{\omega}$ with the even Cuntz algebra $\mathcal{O}_{2d}$ has a trivial bundle structure if and only if k and 2d - 1 are relatively prime, and that the tensor product of the spherical non-commutative torus $S_{\omega}$ with the generalized Cuntz algebra $\mathcal{O}_{\infty}$ has a non-trivial bundle structure when k > 1.

  • PDF